Two-stage differential evolution with dynamic population assignment for constrained multi-objective optimization

被引:0
|
作者
Xu, Bin [1 ]
Zhang, Haifeng [1 ]
Tao, Lili [2 ]
机构
[1] Shanghai Univ Engn Sci, Sch Mech & Automot Engn, Shanghai 201620, Peoples R China
[2] Shanghai Polytech Univ, Sch Intelligent Mfg & Control Engn, Shanghai 201209, Peoples R China
基金
中国国家自然科学基金;
关键词
Constrained multi-objective optimization; Differential evolution; Infeasible information; Two stages; Dynamic population assignment; Multiple strategies; ALGORITHM; STRATEGY; MOEA/D; SUITE;
D O I
10.1016/j.swevo.2024.101657
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Using infeasible information to balance objective optimization and constraint satisfaction is a very promising research direction to address constrained multi-objective problems (CMOPs) via evolutionary algorithms (EAs). The existing constrained multi-objective evolutionary algorithms (CMOEAs) still face the issue of striking a good balance when solving CMOPs with diverse characteristics. To alleviate this issue, in this paper we develop a two-stage different evolution with a dynamic population assignment strategy for CMOPs. In this approach, two cooperative populations are used to provide feasible driving forces and infeasible guiding knowledge. To adequately utilize the infeasibility information, a dynamic population assignment model is employed to determine the primary population, which is used as the parents to generate offspring. The entire search process is divided into two stages, in which the two populations work in weak and strong cooperative ways, respectively. Furthermore, multistrategy-based differential evolution operators are adopted to create aggressive offspring. The superior exploration and exploitation ability of the proposed algorithm is validated via some state-of-the-art CMOEAs over artificial benchmarks and real-world problems. The experimental results show that our proposed algorithm gained a better, or more competitive, performance than the other competitors, and it is an effective approach to balancing objective optimization and constraint satisfaction.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A two-stage diversity enhancement differential evolution algorithm for multi-objective optimization problem
    Wei, Lixin
    Wang, Yexian
    Fan, Rui
    Hu, Ziyu
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (04) : 3993 - 4010
  • [2] Two-stage bidirectional coevolutionary algorithm for constrained multi-objective optimization
    Zhao, Shulin
    Hao, Xingxing
    Chen, Li
    Yu, Tingfeng
    Li, Xingyu
    Liu, Wei
    SWARM AND EVOLUTIONARY COMPUTATION, 2025, 92
  • [3] A simple two-stage evolutionary algorithm for constrained multi-objective optimization
    Ming, Fei
    Gong, Wenyin
    Zhen, Huixiang
    Li, Shuijia
    Wang, Ling
    Liao, Zuowen
    KNOWLEDGE-BASED SYSTEMS, 2021, 228
  • [4] Two-Stage Archive Evolutionary Algorithm for Constrained Multi-Objective Optimization
    Zhang, Kai
    Zhao, Siyuan
    Zeng, Hui
    Chen, Junming
    MATHEMATICS, 2025, 13 (03)
  • [5] Dynamic Multi-objective Differential Evolution for Solving Constrained Optimization Problem
    Jia, Lina
    Zeng, Sanyou
    Zhou, Dong
    Zhou, Aimin
    Li, Zhengjun
    Jing, Hongyong
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 2649 - 2654
  • [6] Improved differential evolution using two-stage mutation strategy for multimodal multi-objective optimization
    Wang, Yong
    Liu, Zhen
    Wang, Gai-Ge
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 78
  • [7] A two-stage evolutionary algorithm assisted by multi-archives for constrained multi-objective optimization
    Zhang, Wenjuan
    Liu, Jianchang
    Zhang, Wei
    Liu, Yuanchao
    Tan, Shubin
    APPLIED SOFT COMPUTING, 2024, 162
  • [8] Two-stage adaptive differential evolution with dynamic dual-populations for multimodal multi-objective optimization with local Pareto solutions
    Li, Guoqing
    Wang, Wanliang
    Yue, Caitong
    Zhang, Weiwei
    Wang, Yirui
    INFORMATION SCIENCES, 2023, 644
  • [9] A two-stage evolutionary algorithm based on three indicators for constrained multi-objective optimization
    Dong, Jun
    Gong, Wenyin
    Ming, Fei
    Wang, Ling
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 195
  • [10] Competition-based two-stage evolutionary algorithm for constrained multi-objective optimization
    Hao, Lupeng
    Peng, Weihang
    Liu, Junhua
    Zhang, Wei
    Li, Yuan
    Qin, Kaixuan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 230 : 207 - 226