Employing Machine Learning for the Prediction of Antimicrobial Resistance (AMR) Phenotypes

被引:0
作者
Kim, Donghoon [1 ]
Jun, Se-ran [2 ]
Hwang, Doosung [3 ]
机构
[1] Arkansas State Univ, Dept Comp Sci, Jonesboro, AR 72401 USA
[2] Univ Arkansas Med Sci, Dept Biomed Informat, Little Rock, AR USA
[3] Dankook Univ, Dept Software Sci, Yongin, South Korea
来源
SOUTHEASTCON 2024 | 2024年
基金
美国国家科学基金会;
关键词
Antimicrobial resistance; phenotypes; machine learning; features; k-mers; COLI;
D O I
10.1109/SOUTHEASTCON52093.2024.10500051
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Antimicrobial resistance (AMR) poses a significant global public health challenge, responsible for the rise in hospital-acquired infections and increased levels of illness and death. The misuse and overuse of antibiotics have played a role in fostering drug resistance among pathogens, creating a pressing need for effective strategies to predict AMR phenotypes. Employing machine learning techniques has emerged as valuable tools in this endeavor, enabling the analysis of vast datasets to identify patterns and predict the resistance or susceptibility of microorganisms to specific antibiotics. The utilization of machine learning presents a promising approach to combat the growing threat of AMR, with the potential to significantly enhance patient outcomes. The objective of this study is to enhance AMR prediction employing machine learning techniques, leveraging insights from the cybersecurity domain due to the similarities between AMR and malware datasets. The approach involves employing k-mer frequency analysis and feature importance algorithms to extract significant features. The experimental outcomes highlight the following key findings: (1) Our approach demonstrates competitive performance, even with a small dataset; and (2) Utilizing 10-mers yields better outcomes than 7-mers. This research has shown that by applying cross -domain research methodologies and capitalizing on the shared characteristics among different datasets, the performance of AMR prediction can be improved.
引用
收藏
页码:1519 / 1524
页数:6
相关论文
共 32 条
[1]   An evaluation of E. coli in urinary tract infection in emergency department at KAMC in Riyadh, Saudi Arabia: retrospective study [J].
Alanazi, Menyfah Q. ;
Alqahtani, Fulwah Y. ;
Aleanizy, Fadilah S. .
ANNALS OF CLINICAL MICROBIOLOGY AND ANTIMICROBIALS, 2018, 17
[2]  
Asokan Govindaraj V, 2019, Oman Med J, V34, P184, DOI 10.5001/omj.2019.37
[3]   AMR-Diag: Neural network based genotype-to-phenotype prediction of resistance towards β-lactams in Escherichia coli and Klebsiella pneumoniae [J].
Avershina, Ekaterina ;
Sharma, Priyanka ;
Taxt, Arne M. ;
Singh, Harpreet ;
Frye, Stephan A. ;
Paul, Kolin ;
Kapil, Arti ;
Naseer, Umaer ;
Kaur, Punit ;
Ahmad, Rafi .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 (19) :1896-1906
[4]   Histogram Entropy Representation and Prototype Based Machine Learning Approach for Malware Family Classification [J].
Baek, Byunghyun ;
Euh, Seoungyul ;
Baek, Dongheon ;
Kim, Donghoon ;
Hwang, Doosung .
IEEE ACCESS, 2021, 9 :152098-152114
[5]   Utilizing Paper-Based Devices for Antimicrobial-Resistant Bacteria Detection [J].
Boehle, Katherine E. ;
Gilliand, Jake ;
Wheeldon, Christopher R. ;
Holder, Amethyst ;
Adkins, Jaclyn A. ;
Geiss, Brian J. ;
Ryan, Elizabeth P. ;
Henry, Charles S. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (24) :6886-6890
[6]   ResFinder 4.0 for predictions of phenotypes from genotypes [J].
Bortolaia, Valeria ;
Kaas, Rolf S. ;
Ruppe, Etienne ;
Roberts, Marilyn C. ;
Schwarz, Stefan ;
Cattoir, Vincent ;
Philippon, Alain ;
Allesoe, Rosa L. ;
Rebelo, Ana Rita ;
Florensa, Alfred Ferrer ;
Fagelhauer, Linda ;
Chakraborty, Trinad ;
Neumann, Bernd ;
Werner, Guido ;
Bender, Jennifer K. ;
Stingl, Kerstin ;
Minh Nguyen ;
Coppens, Jasmine ;
Xavier, Basil Britto ;
Malhotra-Kumar, Surbhi ;
Westh, Henrik ;
Pinholt, Mette ;
Anjum, Muna F. ;
Duggett, Nicholas A. ;
Kempf, Isabelle ;
Nykasenoja, Suvi ;
Olkkola, Satu ;
Wieczorek, Kinga ;
Amaro, Ana ;
Clemente, Lurdes ;
Mossong, Joel ;
Losch, Serge ;
Ragimbeau, Catherine ;
Lund, Ole ;
Aarestrup, Frank M. .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2020, 75 (12) :3491-3500
[7]   Impact of vaccines on antimicrobial resistance [J].
Buchy, Philippe ;
Ascioglu, Sibel ;
Buisson, Yves ;
Datta, Sanjoy ;
Nissen, Michael ;
Tambyah, Paul Anantharajah ;
Vong, Sirenda .
INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2020, 90 :188-196
[8]   Antibiotic resistance: a geopolitical issue [J].
Carlet, J. ;
Pulcini, C. ;
Piddock, L. J. V. .
CLINICAL MICROBIOLOGY AND INFECTION, 2014, 20 (10) :949-953
[9]   Antimicrobial Resistance: Implications and Costs [J].
Dadgostar, Porooshat .
INFECTION AND DRUG RESISTANCE, 2019, 12 :3903-3910
[10]   Comparative Analysis of Low-Dimensional Features and Tree-Based Ensembles for Malware Detection Systems [J].
Euh, Seoungyul ;
Lee, Hyunjong ;
Kim, Donghoon ;
Hwang, Doosung .
IEEE ACCESS, 2020, 8 :76796-76808