Analog Optimization Circuit for Embedded Model Predictive Control

被引:0
作者
Adegbege, Ambrose Adebayo [1 ]
Moran, Francis D. [1 ]
机构
[1] Coll New Jersey, Lab Embedded Control & Optimizat LECO, Dept Elect & Comp Engn, Ewing, NJ 08618 USA
基金
美国国家航空航天局;
关键词
Circuits; Optimization; Analog circuits; Steady-state; Vectors; Predictive control; Field programmable analog arrays; nonlinear programming circuits; feedback optimization controllers; embedded control; model predictive control; NEURAL-NETWORKS; STABILITY; STATE; TANK; MPC;
D O I
10.1109/TCSI.2024.3415013
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Embedded Model Predictive Control (MPC) has taken on new significance, especially in resource-constrained applications, due to recent advances in software and hardware implementation technologies. In this paper, we exploit analog circuit techniques for embedded control implementation. We first interpret the traditional MPC problem as a continuous-time emulation of projected-gradient dynamics. Then the dynamics are implemented on an array of analog circuit processors, also known as Field Programmable Analog Arrays (FPAAs). Using an appropriately constructed Lyapunov function, we establish exponential stability of the ensuing circuit for a fixed input. We prove finite gain $\mathcal{L}_2$ stability when the analog circuit is in feedback interconnection with a physical system. We consider a broad range of control approaches to showcase the flexibility and the ease of implementation when the proposed analog optimization circuit is applied to a quadruple water tank system.
引用
收藏
页码:4247 / 4260
页数:14
相关论文
共 42 条
  • [1] Constrained Continuous-Time Dynamics for Linear Model Predictive Control
    Adegbege, Ambrose A.
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 3098 - 3103
  • [2] Saddle-Point Convergence of Constrained Primal-Dual Dynamics
    Adegbege, Ambrose A.
    Kim, Mun Y.
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (04): : 1357 - 1362
  • [3] Dynamic Multivariable Algebraic Loop Solver for Input-Constrained Control
    Adegbege, Ambrose Adebayo
    Levenson, Richard M.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (06) : 3051 - 3058
  • [4] Controlling the level of sparsity in MPC
    Axehill, Daniel
    [J]. SYSTEMS & CONTROL LETTERS, 2015, 76 : 1 - 7
  • [5] Bertsekas D.P., 2014, Constrained Optimization and Lagrange Multiplier Methods
  • [6] Stability and feasibility of state constrained MPC without stabilizing terminal constraints
    Boccia, Andrea
    Gruene, Lars
    Worthmann, Karl
    [J]. SYSTEMS & CONTROL LETTERS, 2014, 72 : 14 - 21
  • [7] Boyd S., 2004, Convex Optimization, DOI [10.1017/CBO9780511804441, DOI 10.1017/CBO9780511804441]
  • [8] Bruno JN, 2021, P AMER CONTR CONF, P4680, DOI 10.23919/ACC50511.2021.9483438
  • [9] CHUA LO, 1984, IEEE T CIRCUITS SYST, V31, P182, DOI 10.1109/TCS.1984.1085482
  • [10] Online Optimization as a Feedback Controller: Stability and Tracking
    Colombino, Marcello
    Dall'Anese, Emiliano
    Bernstein, Andrey
    [J]. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2020, 7 (01): : 422 - 432