Prediction of Effectiveness and Toxicities of Immune Checkpoint Inhibitors Using Real-World Patient Data

被引:16
作者
Lippenszky, Levente [1 ,2 ]
Mittendorf, Kathleen F. [3 ]
Kiss, Zoltan [1 ,2 ]
LeNoue-Newton, Michele L. [3 ,4 ]
Napan-Molina, Pablo [1 ,2 ]
Rahman, Protiva [4 ,5 ]
Ye, Cheng [4 ]
Laczi, Balazs [1 ,2 ]
Csernai, Eszter [1 ,2 ]
Jain, Neha M. [3 ,6 ]
Holt, Marilyn E. [3 ,7 ]
Maxwell, Christina N. [3 ]
Ball, Madeleine [3 ,8 ]
Ma, Yufang [3 ,9 ]
Mitchell, Margaret B. [3 ,10 ]
Johnson, Douglas B. [3 ,11 ]
Smith, David S. [12 ]
Park, Ben H. [3 ,11 ]
Micheel, Christine M. [3 ,11 ]
Fabbri, Daniel [4 ]
Wolber, Jan [13 ]
Osterman, Travis J. [3 ,4 ,11 ]
机构
[1] GE HealthCare, Sci & Technol Org Artificial Intelligence & Machin, Budapest, Hungary
[2] GE HealthCare, Sci & Technol Org Artificial Intelligence & Machin, San Ramon, CA 60661 USA
[3] Vanderbilt Univ, Med Ctr, Vanderbilt Ingram Canc Ctr, Nashville, TN USA
[4] Vanderbilt Univ, Med Ctr, Dept Biomed Informat, Nashville, TN 37235 USA
[5] Univ Florida, Hlth Outcomes & Biomed Informat, Gainesville, FL USA
[6] OneOncology, Nashville, TN USA
[7] Sarah Cannon Res Inst, Nashville, TN USA
[8] Vanderbilt Univ, Sch Med, Nashville, TN USA
[9] Vanderbilt Univ, Med Ctr, Dept Pharmaceut Serv, Nashville, TN USA
[10] Massachusetts Eye & Ear, Dept Otolaryngol Head & Neck Surg, Boston, MA USA
[11] Vanderbilt Univ, Med Ctr, Dept Med, Div Hematol Oncol, Nashville, TN USA
[12] Vanderbilt Univ, Med Ctr, Dept Radiol & Radiol Sci, Nashville, TN USA
[13] GE HealthCare, Pharmaceut Diagnost, Chalfont St Giles, England
关键词
D O I
10.1200/CCI.23.00207
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PURPOSEAlthough immune checkpoint inhibitors (ICIs) have improved outcomes in certain patients with cancer, they can also cause life-threatening immunotoxicities. Predicting immunotoxicity risks alongside response could provide a personalized risk-benefit profile, inform therapeutic decision making, and improve clinical trial cohort selection. We aimed to build a machine learning (ML) framework using routine electronic health record (EHR) data to predict hepatitis, colitis, pneumonitis, and 1-year overall survival.METHODSReal-world EHR data of more than 2,200 patients treated with ICI through December 31, 2018, were used to develop predictive models. Using a prediction time point of ICI initiation, a 1-year prediction time window was applied to create binary labels for the four outcomes for each patient. Feature engineering involved aggregating laboratory measurements over appropriate time windows (60-365 days). Patients were randomly partitioned into training (80%) and test (20%) sets. Random forest classifiers were developed using a rigorous model development framework.RESULTSThe patient cohort had a median age of 63 years and was 61.8% male. Patients predominantly had melanoma (37.8%), lung cancer (27.3%), or genitourinary cancer (16.4%). They were treated with PD-1 (60.4%), PD-L1 (9.0%), and CTLA-4 (19.7%) ICIs. Our models demonstrate reasonably strong performance, with AUCs of 0.739, 0.729, 0.755, and 0.752 for the pneumonitis, hepatitis, colitis, and 1-year overall survival models, respectively. Each model relies on an outcome-specific feature set, though some features are shared among models.CONCLUSIONTo our knowledge, this is the first ML solution that assesses individual ICI risk-benefit profiles based predominantly on routine structured EHR data. As such, use of our ML solution will not require additional data collection or documentation in the clinic. Predicting #immunotherapy OS and toxicities across tumors using EHR data @GEHealthCare @VUMChealth.
引用
收藏
页数:12
相关论文
共 32 条
[1]   Immune-Related Adverse Events by Immune Checkpoint Inhibitors Significantly Predict Durable Efficacy Even in Responders with Advanced Non-Small Cell Lung Cancer [J].
Akamatsu, Hiroaki ;
Murakami, Eriko ;
Oyanagi, Jun ;
Shibaki, Ryota ;
Kaki, Takahiro ;
Takase, Eri ;
Tanaka, Masanori ;
Harutani, Yuhei ;
Yamagata, Nao ;
Okuda, Yuka ;
Furuta, Katsuyuki ;
Sugimoto, Takeya ;
Teraoka, Shunsuke ;
Hayata, Atsushi ;
Tokudome, Nahomi ;
Ozawa, Yuichi ;
Mori, Keita ;
Koh, Yasuhiro ;
Yamamoto, Nobuyuki .
ONCOLOGIST, 2020, 25 (04) :E679-E683
[2]  
[Anonymous], OMOP Common Data Model 2023
[3]   Machine Learning for Prediction of Immunotherapy Efficacy in Non-Small Cell Lung Cancer from Simple Clinical and Biological Data [J].
Benzekry, Sebastien ;
Grangeon, Mathieu ;
Karlsen, Melanie ;
Alexa, Maria ;
Bicalho-Frazeto, Isabella ;
Chaleat, Solene ;
Tomasini, Pascale ;
Barbolosi, Dominique ;
Barlesi, Fabrice ;
Greillier, Laurent .
CANCERS, 2021, 13 (24)
[4]  
Cawley GC, 2010, J MACH LEARN RES, V11, P2079
[5]   Improved prediction of immune checkpoint blockade efficacy across multiple cancer types [J].
Chowell, Diego ;
Yoo, Seong-Keun ;
Valero, Cristina ;
Pastore, Alessandro ;
Krishna, Chirag ;
Lee, Mark ;
Hoen, Douglas ;
Shi, Hongyu ;
Kelly, Daniel W. ;
Patel, Neal ;
Makarov, Vladimir ;
Ma, Xiaoxiao ;
Vuong, Lynda ;
Sabio, Erich Y. ;
Weiss, Kate ;
Kuo, Fengshen ;
Lenz, Tobias L. ;
Samstein, Robert M. ;
Riaz, Nadeem ;
Adusumilli, Prasad S. ;
Balachandran, Vinod P. ;
Plitas, George ;
Hakimi, A. Ari ;
Abdel-Wahab, Omar ;
Shoushtari, Alexander N. ;
Postow, Michael A. ;
Motzer, Robert J. ;
Ladanyi, Marc ;
Zehir, Ahmet ;
Berger, Michael F. ;
Gonen, Mithat ;
Morris, Luc G. T. ;
Weinhold, Nils ;
Chan, Timothy A. .
NATURE BIOTECHNOLOGY, 2022, 40 (04) :499-+
[6]   Clinical Models to Define Response and Survival With Anti-PD-1 Antibodies Alone or Combined With Ipilimumab in Metastatic Melanoma [J].
da Silva, Ines Pires ;
Ahmed, Tasnia ;
McQuade, Jennifer L. ;
Nebhan, Caroline A. ;
Park, John J. ;
Versluis, Judith M. ;
Serra-Bellver, Patricio ;
Khan, Yasir ;
Slattery, Tim ;
Oberoi, Honey K. ;
Ugurel, Selma ;
Haydu, Lauren E. ;
Herbst, Rudolf ;
Utikal, Jochen ;
Pfoehler, Claudia ;
Terheyden, Patrick ;
Weichenthal, Michael ;
Gutzmer, Ralf ;
Mohr, Peter ;
Rai, Rajat ;
Smith, Jessica L. ;
Scolyer, Richard A. ;
Arance, Ana M. ;
Pickering, Lisa ;
Larkin, James ;
Lorigan, Paul ;
Blank, Christian U. ;
Schadendorf, Dirk ;
Davies, Michael A. ;
Carlino, Matteo S. ;
Johnson, Douglas B. ;
Long, Georgina V. ;
Lo, Serigne N. ;
Menzies, Alexander M. .
JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (10) :1068-+
[7]   Prognostic role of systemic inflammation indexes in metastatic urothelial carcinoma treated with immunotherapy [J].
Dionese, Michele ;
Basso, Umberto ;
Pierantoni, Francesco ;
Lai, Eleonora ;
Cavasin, Nicolo ;
Erbetta, Elisa ;
Jubran, Salim ;
Bonomi, Giorgio ;
Bimbatti, Davide ;
Maruzzo, Marco .
FUTURE SCIENCE OA, 2023, 9 (07)
[8]   Association Between Immune-Related Adverse Events and Recurrence-Free Survival Among Patients With Stage III Melanoma Randomized to Receive Pembrolizumab or Placebo A Secondary Analysis of a Randomized Clinical Trial [J].
Eggermont, Alexander M. M. ;
Kicinski, Michal ;
Blank, Christian U. ;
Mandala, Mario ;
Long, Georgina V. ;
Atkinson, Victoria ;
Dalle, Stephane ;
Haydon, Andrew ;
Khattak, Adnan ;
Carlino, Matteo S. ;
Sandhu, Shahneen ;
Larkin, James ;
Puig, Susana ;
Ascierto, Paolo A. ;
Rutkowski, Piotr ;
Schadendorf, Dirk ;
Koornstra, Rutger ;
Hernandez-Aya, Leonel ;
Di Giacomo, Anna Maria ;
van den Eertwegh, Alfonsus J. M. ;
Grob, Jean-Jacques ;
Gutzmer, Ralf ;
Jamal, Rahima ;
Lorigan, Paul C. ;
Krepler, Clemens ;
Ibrahim, Nageatte ;
Marreaud, Sandrine ;
van Akkooi, Alexander ;
Robert, Caroline ;
Suciu, Stefan .
JAMA ONCOLOGY, 2020, 6 (04) :519-527
[9]   Identification and prediction of immune checkpoint inhibitors-related pneumonitis by machine learning [J].
Gong, Li ;
Gong, Jun ;
Sun, Xin ;
Yu, Lin ;
Liao, Bin ;
Chen, Xia ;
Li, Yong-sheng .
FRONTIERS IN IMMUNOLOGY, 2023, 14
[10]   Biomarkers of immune checkpoint inhibitor response and toxicity: Challenges and opportunities [J].
Goodman, Rachel S. ;
Jung, Seungyeon ;
Balko, Justin M. ;
Johnson, Douglas B. .
IMMUNOLOGICAL REVIEWS, 2023, 318 (01) :157-166