Benchmarking characterization methods for noisy quantum circuits

被引:1
作者
Dahlhauser, Megan L.
Humble, Travis S. [1 ]
机构
[1] Oak Ridge Natl Lab, Quantum Sci Ctr, Oak Ridge, TN 37831 USA
关键词
D O I
10.1103/PhysRevA.109.042620
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Effective methods for characterizing the noise in quantum computing devices are essential for programming and debugging circuit performance. Existing approaches vary in the information obtained as well as the amount of quantum and classical resources required, with more information generally requiring more resources. Here we benchmark the characterization methods of gate set tomography, Pauli channel noise reconstruction, and empirical direct characterization for developing models that describe noisy quantum circuit performance on a 27-qubit superconducting transmon device. We evaluate these models by comparing the accuracy of noisy circuit simulations with the corresponding experimental observations. We find that the agreement of noise model to experiment does not correlate with the information gained by characterization and that the underlying circuit strongly influences the best choice of characterization approach. Empirical direct characterization scales best of the methods we tested and produced the most accurate characterizations across our benchmarks.
引用
收藏
页数:17
相关论文
共 28 条
  • [11] energy.gov, US
  • [12] Efficient Estimation of Pauli Channels
    Flammia, Steven T.
    Wallman, Joel J.
    [J]. ACM TRANSACTIONS ON QUANTUM COMPUTING, 2020, 1 (01):
  • [13] Greenbaum D, 2015, Arxiv, DOI arXiv:1509.02921
  • [14] Efficient learning of quantum noise
    Harper, Robin
    Flammia, Steven T.
    Wallman, Joel J.
    [J]. NATURE PHYSICS, 2020, 16 (12) : 1184 - 1188
  • [15] IBM, 2018, Qiskit Terra Documentation
  • [16] Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets
    Kandala, Abhinav
    Mezzacapo, Antonio
    Temme, Kristan
    Takita, Maika
    Brink, Markus
    Chow, Jerry M.
    Gambetta, Jay M.
    [J]. NATURE, 2017, 549 (7671) : 242 - 246
  • [17] Experimental Realization of a Quantum Support Vector Machine
    Li, Zhaokai
    Liu, Xiaomei
    Xu, Nanyang
    Du, Jiangfeng
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (14)
  • [18] Efficient Z gates for quantum computing
    Mckay, David C.
    Wood, Christopher J.
    Sheldon, Sarah
    Chow, Jerry M.
    Gambetta, Jay M.
    [J]. PHYSICAL REVIEW A, 2017, 96 (02)
  • [19] Self-consistent quantum process tomography
    Merkel, Seth T.
    Gambetta, Jay M.
    Smolin, John A.
    Poletto, Stefano
    Corcoles, Antonio D.
    Johnson, Blake R.
    Ryan, Colm A.
    Steffen, Matthias
    [J]. PHYSICAL REVIEW A, 2013, 87 (06):
  • [20] Ground-state energy estimation of the water molecule on a trapped-ion quantum computer
    Nam, Yunseong
    Chen, Jwo-Sy
    Pisenti, Neal C.
    Wright, Kenneth
    Delaney, Conor
    Maslov, Dmitri
    Brown, Kenneth R.
    Allen, Stewart
    Amini, Jason M.
    Apisdorf, Joel
    Beck, Kristin M.
    Blinov, Aleksey
    Chaplin, Vandiver
    Chmielewski, Mika
    Collins, Coleman
    Debnath, Shantanu
    Hudek, Kai M.
    Ducore, Andrew M.
    Keesan, Matthew
    Kreikemeier, Sarah M.
    Mizrahi, Jonathan
    Solomon, Phil
    Williams, Mike
    Wong-Campos, Jaime David
    Moehring, David
    Monroe, Christopher
    Kim, Jungsang
    [J]. NPJ QUANTUM INFORMATION, 2020, 6 (01)