Process Damping Identification Using Bayesian Learning and Time Domain Simulation

被引:1
作者
Cornelius, Aaron [1 ]
Karandikar, Jaydeep [2 ]
Tyler, Chris [2 ]
Schmitz, Tony [1 ,2 ]
机构
[1] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Nathan W Dougherty Engn Bldg,1512 Middle Dr, Knoxville, TN 37916 USA
[2] Oak Ridge Natl Lab, Mfg Sci Div, 2350 Cherahala Blvd, Knoxville, TN 37932 USA
来源
JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME | 2024年 / 146卷 / 08期
关键词
milling; dynamics; process damping; Bayesian learning; machine learning; machine tool dynamics; machining processes; STABILITY PREDICTION;
D O I
10.1115/1.4064832
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Process damping can provide improved machining productivity by increasing the stability limit at low spindle speeds. While the phenomenon is well known, experimental identification of process damping model parameters can limit pre-process parameter selection that leverages the potential increases in material removal rates. This paper proposes a physics-informed Bayesian method that can identify the cutting force and process damping model coefficients from a limited set of test cuts without requiring direct measurements of cutting force or vibration. The method uses time-domain simulation to incorporate process damping and provide a basis for test selection. New strategies for efficient sampling and dimensionality reduction are applied to lower computation time and minimize the effect of model error. The proposed method is demonstrated, and the identified cutting and damping force coefficients are compared to values obtained using machining tests and least-squares fitting.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A novel process damping identification model and cutting stability prediction
    Dongju Chen
    Xuan Zhang
    Shupei Li
    Ri Pan
    Kun Sun
    Jinwei Fan
    The International Journal of Advanced Manufacturing Technology, 2023, 126 : 4573 - 4579
  • [42] TIME DOMAIN SIMULATION OF DYNAMIC CORNER MILLING PROCESS CONSIDERING CHATTER VIBRATION WITH FINITE AMPLITUDE
    Suzuki, Norikazu
    Hayashi, Hiroki
    Shamoto, Eiji
    Irino, Naruhiro
    Imabeppu, Yasuhiro
    PROCEEDINGS OF THE ASME 2021 16TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE (MSEC2021), VOL 1, 2021,
  • [43] Global stability predictions for flexible workpiece milling using time domain simulation
    Rubeo, Mark A.
    Schmitz, Tony L.
    JOURNAL OF MANUFACTURING SYSTEMS, 2016, 40 : 8 - 14
  • [44] Towards quantifying the uncertainty in in silico predictions using Bayesian learning
    Allen, Timothy E. H.
    Middleton, Alistair M.
    Goodman, Jonathan M.
    Russell, Paul J.
    Kukic, Predrag
    Gutsell, Steve
    COMPUTATIONAL TOXICOLOGY, 2022, 23
  • [45] Modeling, identification and application of process damping in milling of titanium alloy
    Li, Xin
    Zhao, Wei
    Li, Liang
    He, Ning
    JOURNAL OF VIBROENGINEERING, 2014, 16 (06) : 2657 - 2675
  • [46] Advanced machine learning artificial neural network classifier for lithology identification using Bayesian optimization
    Soulaimani, Saad
    Soulaimani, Ayoub
    Abdelrahman, Kamal
    Miftah, Abdelhalim
    Fnais, Mohammed S.
    Mondal, Biraj Kanti
    FRONTIERS IN EARTH SCIENCE, 2024, 12
  • [47] Risk Identification of Mountain Torrent Hazard Using Machine Learning and Bayesian Model Averaging Techniques
    Chu, Ya
    Song, Weifeng
    Chen, Dongbin
    WATER, 2024, 16 (11)
  • [48] Real time terrain identification of autonomous robots using machine learning
    M. G. Harinarayanan Nampoothiri
    P. S. Godwin Anand
    Rahul Antony
    International Journal of Intelligent Robotics and Applications, 2020, 4 : 265 - 277
  • [49] Real time terrain identification of autonomous robots using machine learning
    Nampoothiri, M. G. Harinarayanan
    Anand, P. S. Godwin
    Antony, Rahul
    INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS, 2020, 4 (03) : 265 - 277
  • [50] Identification of Intra-Domain Ambiguity using Transformer-based Machine Learning
    Moharil, Ambarish
    Sharma, Arpit
    2022 IEEE/ACM 1ST INTERNATIONAL WORKSHOP ON NATURAL LANGUAGE-BASED SOFTWARE ENGINEERING (NLBSE 2022), 2022, : 51 - 58