A differential evolution framework based on the fluid model for feature selection

被引:5
作者
Li, Min [1 ]
Wang, Junke [1 ]
Cao, Rutun [1 ]
Li, Yulong [1 ]
机构
[1] Nanchang Inst Technol, Sch Informat Engn, 289 Tianxiang Rd, Nanchang, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature selection; Differential evolutionary; Fluid model; Local optimal; OPTIMIZATION; ALGORITHM; CLASSIFICATION; MUTATION;
D O I
10.1016/j.engappai.2024.108560
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Feature selection in machine learning is a crucial step to effectively address the issue of feature redundancy in classification problems. Numerous feature selection algorithms have been developed to minimize the number of features, reduce computational cost, and improve classification accuracy. Differential evolution algorithms have the advantage of being simple in structure, robust, fast in convergence, and frequently used to solve feature selection problems. However, it is worth noting that differential evolution algorithms are susceptible to local optimum and stagnation issues, particularly when applied to high-dimensional data. To address this issue, in this study, we propose a differential evolution framework based on the fluid model, named DEF-FM, for feature selection. DEF-FM has the capability to speed up the convergence of differential evolution algorithms and alleviate the effects of local optima. The proposed framework is validated and compared against eight popular differential evolution algorithms using 12 publicly available benchmark datasets and experimental results unequivocally demonstrate the superiority of the proposed framework.
引用
收藏
页数:19
相关论文
共 62 条
[61]   Markov blanket-embedded genetic algorithm for gene selection [J].
Zhu, Zexuan ;
Ong, Yew-Soon ;
Dash, Manoranjan .
PATTERN RECOGNITION, 2007, 40 (11) :3236-3248
[62]   A hybrid approach of differential evolution and artificial bee colony for feature selection [J].
Zorarpaci, Ezgi ;
Ozel, Selma Ayse .
EXPERT SYSTEMS WITH APPLICATIONS, 2016, 62 :91-103