Conformational changes in the Niemann-Pick type C1 protein NCR1 drive sterol translocation

被引:2
|
作者
Frain, Kelly M. [1 ]
Dedic, Emil [1 ]
Nel, Lynette [1 ]
Bohush, Anastasiia [1 ,2 ]
Olesen, Esben [1 ]
Thaysen, Katja [3 ]
Wustner, Daniel [3 ]
Stokes, David L. [4 ]
Pedersen, Bjorn Panyella [1 ]
机构
[1] Aarhus Univ, Dept Mol Biol & Genet, DK-8000 Aarhus C, Denmark
[2] Aarhus Univ, Aarhus Inst Adv Studies, Dept Mol Biol & Genet, DK-8000 Aarhus C, Denmark
[3] Univ Southern Denmark, Dept Biochem & Mol Biol, DK-5230 Odense M, Denmark
[4] NYU, Sch Med, Dept Biochem & Mol Pharmacol, New York, NY 10016 USA
基金
欧洲研究理事会;
关键词
sterol uptake; Niemann-Picktype C protein; vacuole; cryo-EM; glycocalyx; CRYO-EM STRUCTURE; DISEASE; YEAST; NPC1; GLYCOCALYX; VALIDATION; TRANSITION; TRANSPORT; MEMBRANE; SEQUENCE;
D O I
10.1073/pnas.2315575121
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The membrane protein Niemann-Pick type C1 (NPC1, named NCR1 in yeast) is central to sterol homeostasis in eukaryotes. Saccharomyces cerevisiae NCR1 is localized to the vacuolar membrane, where it is suggested to carry sterols across the protective glycocalyx and deposit them into the vacuolar membrane. However, documentation of a vacuolar glycocalyx in fungi is lacking, and the mechanism for sterol translocation has remained unclear. Here, we provide evidence supporting the presence of a glycocalyx in isolated S. cerevisiae vacuoles and report four cryo- EM structures of NCR1 in two distinct conformations, named tense and relaxed. These two conformations illustrate the movement of sterols through a tunnel formed by the luminal domains, thus bypassing the barrier presented by the glycocalyx. Based on these structures and on comparison with other members of the Resistance-Nodulation-Division (RND) superfamily, we propose a transport model that links changes in the luminal domains with a cycle of protonation and deprotonation within the transmembrane region of the protein. Our model suggests that NPC proteins work by a generalized RND mechanism where the proton motive force drives conformational changes in the transmembrane domains that are allosterically coupled to luminal/extracellular domains to promote sterol transport.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Correction of Niemann-Pick type C1 trafficking and activity with the histone deacetylase inhibitor valproic acid
    Subramanian, Kanagaraj
    Hutt, Darren M.
    Scott, Samantha M.
    Gupta, Vijay
    Mao, Shu
    Balch, William E.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2020, 295 (23) : 8017 - 8035
  • [32] Niemann-Pick type C1 regulates cholesterol transport and metamorphosis in silkworm, Bombyx mori (Dazao)
    Ke, Xiao-Xue
    Chao, Huijuan
    Abbas, Muhammad Nadeem
    Kausar, Saima
    Gul, Isma
    Ji, Haoyan
    Yang, Liqun
    Cui, Hongjuan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 152 (152) : 525 - 534
  • [33] Iron chelation by deferiprone does not rescue the Niemann-Pick Disease Type C1 mouse model
    Ya Hui Hung
    Amit Lotan
    Shlomo Yeshurun
    Anna Schroeder
    Ashley I. Bush
    BioMetals, 2020, 33 : 87 - 95
  • [34] Structural Insights into the Niemann-Pick C1 (NPC1)-Mediated Cholesterol Transfer and Ebola Infection
    Gong, Xin
    Qian, Hongwu
    Zhou, Xinhui
    Wu, Jianping
    Wan, Tao
    Cao, Pingping
    Huang, Weiyun
    Zhao, Xin
    Wang, Xudong
    Wang, Peiyi
    Shi, Yi
    Gao, George F.
    Zhou, Qiang
    Yan, Nieng
    CELL, 2016, 165 (06) : 1467 - 1478
  • [35] A differential proteomics study of cerebrospinal fluid from individuals with Niemann-Pick disease, Type C1
    Li, Wenping
    Pergande, Melissa R. R.
    Crutchfield, Christopher A. A.
    Searle, Brian C. C.
    Backlund, Peter S. S.
    Picache, Jaqueline A. A.
    Burkert, Kathryn
    Yanjanin-Farhat, Nicole M. M.
    Blank, Paul S. S.
    Toth, Cynthia L. L.
    Wassif, Christopher A. A.
    Porter, Forbes D. D.
    Cologna, Stephanie M. M.
    PROTEOMICS, 2023, 23 (11)
  • [36] Iron chelation by deferiprone does not rescue the Niemann-Pick Disease Type C1 mouse model
    Hung, Ya Hui
    Lotan, Amit
    Yeshurun, Shlomo
    Schroeder, Anna
    Bush, Ashley I.
    BIOMETALS, 2020, 33 (2-3) : 87 - 95
  • [37] Phenotype assessment for neurodegenerative murine models with ataxia and application to Niemann-Pick disease, type C1
    Yerger, Julia
    Cougnoux, Antony C.
    Abbott, Craig B.
    Luke, Rachel
    Clark, Tannia S.
    Cawley, Niamh X.
    Porter, Forbes D.
    Davidson, Cristin D.
    BIOLOGY OPEN, 2022, 11 (04):
  • [38] The National Niemann-Pick C1 Disease Database: Report of clinical features and health problems
    Garver, William S.
    Francis, Gordon A.
    Jelinek, David
    Shepherd, Glen
    Flynn, James
    Castro, Graciela
    Vockley, Cate Walsh
    Coppock, Donald L.
    Pettit, Kathleen M.
    Heidenreich, Randy A.
    Meaney, F. John
    AMERICAN JOURNAL OF MEDICAL GENETICS PART A, 2007, 143A (11) : 1204 - 1211
  • [39] Correlation of age of onset and clinical severity in Niemann-Pick disease type C1 with lysosomal abnormalities and gene expression
    Baxter, Laura L.
    Watkins-Chow, Dawn E.
    Johnson, Nicholas L.
    Farhat, Nicole Y.
    Platt, Frances M.
    Dale, Ryan K.
    Porter, Forbes D.
    Pavan, William J.
    Rodriguez-Gil, Jorge L.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [40] The Effects of Combined Therapy With Metformin and Hydroxypropyl-β-Cyclodextrin in a Mouse Model of Niemann-Pick Disease Type C1
    Du, Jiang
    Liu, Xinlei
    Zhang, Yan
    Han, Xiaojing
    Ma, Chunya
    Liu, Yanli
    Guan, Lihong
    Qiao, Liang
    Lin, Juntang
    FRONTIERS IN PHARMACOLOGY, 2022, 12