Muon capture on 6Li, 12C, and 16O from ab initio nuclear theory

被引:3
|
作者
Jokiniemi, Lotta [1 ]
Navratil, Petr [1 ,2 ]
Kotila, Jenni [3 ,4 ,5 ]
Kravvaris, Kostas [6 ]
机构
[1] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
[2] Univ Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
[3] Univ Jyvaskyla, Finnish Inst Educ Res, POB 35, FI-40014 Jyvaskyla, Finland
[4] Yale Univ, Ctr Theoret Phys, Sloane Phys Lab, New Haven, CT 06520 USA
[5] Int Ctr Adv Training & Res Phys CIFRA, 409 Atomistilor St, Bucharest 077125, Romania
[6] Lawrence Livermore Natl Lab, POB 808,L-414, Livermore, CA 94551 USA
基金
芬兰科学院; 加拿大自然科学与工程研究理事会;
关键词
SHELL-MODEL; RATES; TRANSITIONS;
D O I
10.1103/PhysRevC.109.065501
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Muon capture on nuclei is one of the most promising probes of the nuclear electroweak current driving the yet-hypothetical neutrinoless double-beta (0 nu beta beta) decay. Both processes involve vector and axial-vector currents at finite momentum transfer, q approximate to 100 MeV, as well as the induced pseudoscalar and weak-magnetism currents. Comparing measured muon-capture rates with reliable ab initio nuclear-theory predictions could help us validate these currents. To this end, we compute partial muon-capture rates for 6Li, 12C, and 16O, feeding the ground and excited states in 6He, 12B, and 16N, using ab initio no-core shell model with two- and three-nucleon chiral interactions. We remove the spurious center-of-mass motion by introducing translationally invariant operators and approximate the effect of hadronic two-body currents by Fermi-gas model. We solve the bound-muon wave function from the Dirac wave equations in the Coulomb field created by a finite nucleus. We find that the computed rates to the low-lying states in the final nuclei are in good agreement with the measured counterparts. We highlight sensitivity of some of the transitions to the sub-leading three-nucleon interaction terms. We also compare summed rates to several tens of final states with the measured total capture rates and note that we slightly underestimate the total rate with this simple approach due to limited range of excitation energies.
引用
收藏
页数:14
相关论文
共 7 条
  • [1] Astrophysical SE2 factor of the 12C (α, γ)16O reaction through the 12C(11B, 7Li)16O transfer reaction
    Shen, Y. P.
    Guo, B.
    Li, Z. H.
    Li, Y. J.
    Pang, D. Y.
    Adhikari, S.
    An, Z. D.
    Su, J.
    Yan, S. Q.
    Du, X. C.
    Fan, Q. W.
    Gan, L.
    Han, Z. Y.
    Li, D. H.
    Li, E. T.
    Li, X. Y.
    Lian, G.
    Liu, J. C.
    Ma, T. L.
    Pei, C. J.
    Su, Y.
    Wang, Y. B.
    Zeng, S.
    Zhou, Y.
    Liu, W. P.
    PHYSICAL REVIEW C, 2019, 99 (02)
  • [2] The 12C(16O,γ28Si) radiative capture reaction at sub-barrier energies
    Goasduff, A.
    Courtin, S.
    Haas, F.
    Lebhertz, D.
    Jenkins, D. G.
    PHYSICAL REVIEW C, 2014, 89 (01):
  • [3] Astrophysical S factor of the 12C(α,γ) 16O reaction calculated with reduced R-matrix theory
    An, Zhen-Dong
    Chen, Zhen-Peng
    Ma, Yu-Gang
    Yu, Jian-Kai
    Sun, Ye-Ying
    Fan, Gong-Tao
    Li, Yong-Jiang
    Xu, Hang-Hua
    Huang, Bo-Song
    Wang, Kan
    PHYSICAL REVIEW C, 2015, 92 (04):
  • [4] Shell-model study of spin-dipole strength in 12C and 16O
    Suzuki, T
    Sagawa, H
    NUCLEAR PHYSICS A, 1998, 637 (04) : 547 - 558
  • [5] Comparison between shell model and self-consistent mean field calculations for ground charge density distributions and elastic form factors of 12C and 16O nuclei
    Radhi, R. A.
    Ridha, A. R.
    Majeed, W. Z.
    INDIAN JOURNAL OF PHYSICS, 2015, 89 (07) : 723 - 728
  • [6] Comparison between shell model and self-consistent mean field calculations for ground charge density distributions and elastic form factors of 12C and 16O nuclei
    R. A. Radhi
    A. R. Ridha
    W. Z. Majeed
    Indian Journal of Physics, 2015, 89 : 723 - 728
  • [7] Testing ab initio nuclear structure in neutron-rich nuclei: Lifetime measurements of second 2+ state in 16C and 20O
    Ciemala, M.
    Ziliani, S.
    Crespi, F. C. L.
    Leoni, S.
    Fornal, B.
    Maj, A.
    Bednarczyk, P.
    Benzoni, G.
    Bracco, A.
    Boiano, C.
    Bottoni, S.
    Brambilla, S.
    Bast, M.
    Beckers, M.
    Braunroth, T.
    Camera, F.
    Cieplicka-Orynczak, N.
    Clement, E.
    Coelli, S.
    Dorvaux, O.
    Erturk, S.
    de France, G.
    Fransen, C.
    Goldkuhle, A.
    Grebosz, J.
    Harakeh, M. N.
    Iskra, L. W.
    Jacquot, B.
    Karpov, A.
    Kicinska-Habior, M.
    Kim, Y.
    Kmiecik, M.
    Lemasson, A.
    Lenzi, S. M.
    Lewitowicz, M.
    Li, H.
    Matea, I
    Mazurek, K.
    Michelagnoli, C.
    Matejska-Minda, M.
    Million, B.
    Mueller-Gatermann, C.
    Nanal, V
    Napiorkowski, P.
    Napoli, D. R.
    Palit, R.
    Rejmund, M.
    Schmitt, Ch
    Stanoiu, M.
    Stefan, I
    PHYSICAL REVIEW C, 2020, 101 (02)