Enhancing Drain Current Performance of AlGaN/GaN HEMT through Graded AlGaN Barrier

被引:0
|
作者
Keerthi, M. [1 ]
Pravin, J. Charles [2 ]
Mohan, B. [2 ]
机构
[1] Kalasalingam Acad Res & Educ, ECE, Krishnankoil, India
[2] Kalasalingam Acad Res & Educ, Krishnankoil, India
来源
2024 7TH INTERNATIONAL CONFERENCE ON DEVICES, CIRCUITS AND SYSTEMS, ICDCS 2024 | 2024年
关键词
GaN HEMT; AlGaN barrier; graded barrier; drain current; Sentaurus TCAD;
D O I
10.1109/ICDCS59278.2024.10560656
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Aluminum Gallium Nitride (AlGaN)/Gallium Nitride (GaN) High Electron Mobility Transistors (HEMTs) have attracted a lot of attention due to their potential for highfrequency and high-power applications. This paper presents a novel structure for AlGaN/GaN HEMTs with an improved drain current performance achieved through a graded AlGaN barrier. The proposed structure exhibits a drain current of 3.2A, a substantial enhancement of 77 percentage as compared to the 1.8A obtained from conventional GaN HEMTs.To improve electron transport properties, step gradients of aluminum mole fraction (x) are used in the construction of the graded AlGaN barrier. Simulation studies, taking into account significant parameters like gate and drain lengths (L-g,L-d), source-gate length (L-sg), and gate-drain length (L-g,L-d), show improved device performance in comparison to traditional HEMTs with a R-on value of 0.0021.The simulated results which includes the drain current,electron mobility and transconductance confirms the efficacy of the proposed structure contributing to enhanced device performance.
引用
收藏
页码:313 / 316
页数:4
相关论文
共 50 条
  • [41] Current collapse modeling in AlGaN/GaN HEMT using small signal equivalent circuit for high power application
    Nirmal, D.
    Arivazhagan, L.
    Fletcher, A. S. Augustine
    Ajayan, J.
    Prajoon, P.
    SUPERLATTICES AND MICROSTRUCTURES, 2018, 113 : 810 - 820
  • [42] Nonlinear AlGaN/GaN HEMT Model Using Multiple Artificial Neural Networks
    Barmuta, P.
    Plonski, P.
    Czuba, K.
    Avolio, G.
    Schreurs, D.
    2012 19TH INTERNATIONAL CONFERENCE ON MICROWAVE RADAR AND WIRELESS COMMUNICATIONS (MIKON), VOLS 1 AND 2, 2012, : 462 - 466
  • [43] Design of a High Power, Wideband Power Amplifier Using AlGaN/GaN HEMT
    Tan, J.
    Yuk, K. S.
    Branner, G. R.
    2017 IEEE 18TH WIRELESS AND MICROWAVE TECHNOLOGY CONFERENCE (WAMICON), 2017,
  • [44] Radiation-Sensitive AlGaN/GaN MOS-HEMT-Based Dosimeter
    Ruby Mann
    Sonam Rewari
    Praveen Pal
    Shobha Sharma
    R. S. Gupta
    Journal of Electronic Materials, 2022, 51 : 5609 - 5616
  • [45] A physics-based electrical model of a magnetically sensitive AlGaN/GaN HEMT
    Jankovic, Nebojsa
    Faramehr, Soroush
    Igic, Petar
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2022, 21 (01) : 191 - 196
  • [46] Effects of gate shaping and consequent process changes on AlGaN/GaN HEMT reliability
    Moereke, Janina
    Tapajna, Milan
    Uren, Michael J.
    Pei, Yi
    Mishra, Umesh K.
    Kuball, Martin
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2012, 209 (12): : 2646 - 2652
  • [47] Radiation-Sensitive AlGaN/GaN MOS-HEMT-Based Dosimeter
    Mann, Ruby
    Rewari, Sonam
    Pal, Praveen
    Sharma, Shobha
    Gupta, R. S.
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (10) : 5609 - 5616
  • [48] Performance improvement of GaN-based near-UV LEDs with InGaN/AlGaN superlattices strain relief layer and AlGaN barrier
    Jia, Chuanyu
    Yu, Tongjun
    Feng, Xiaohui
    Wang, Kun
    Zhang, Guoyi
    SUPERLATTICES AND MICROSTRUCTURES, 2016, 97 : 417 - 423
  • [49] Low-k BCB passivation on AlGaN-GaN HEMT fabrication
    Wang, WK
    Lin, CH
    Lin, PC
    Lin, CK
    Huang, FH
    Chan, YJ
    Chen, GT
    Chyi, JI
    IEEE ELECTRON DEVICE LETTERS, 2004, 25 (12) : 763 - 765
  • [50] Improved surface morphology and mobility of AlGaN/GaN HEMT grown on silicon substrate
    Zhu, Xueliang
    Ma, Jun
    Huang, Tongde
    Li, Ming
    Wong, Ka Ming
    Lau, Kei May
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 9, NO 3-4, 2012, 9 (3-4): : 473 - 475