Machine learning to optimize automated RH genotyping using whole-exome sequencing data

被引:2
作者
Chang, Ti-Cheng [1 ]
Yu, Jing [2 ]
Wang, Zhaoming [3 ]
Hankins, Jane S. [4 ]
Weiss, Mitchell J. [4 ]
Wu, Gang [1 ]
Westhoff, Connie M. [5 ]
Chou, Stella T. [6 ]
Zheng, Yan [2 ]
机构
[1] St Jude Childrens Res Hosp, Ctr Appl Bioinformat, Memphis, TN USA
[2] St Jude Childrens Res Hosp, Dept Pathol, 262 Danny Thomas Pl,342, Memphis, MS 38105 USA
[3] St Jude Childrens Res Hosp, Dept Epidemiol & Canc Control, Memphis, TN USA
[4] St Jude Childrens Res Hosp, Dept Hematol, Memphis, TN USA
[5] New York Blood Ctr Enterprises, Lab Immunohematol & Genom, New York, NY USA
[6] Univ Penn, Childrens Hosp Philadelphia, Sch Med, Dept Pediat, Philadelphia, PA USA
基金
美国国家卫生研究院;
关键词
SICKLE-CELL-DISEASE; RED-BLOOD-CELL; ALLOIMMUNIZATION; TRANSFUSION;
D O I
10.1182/bloodadvances.2023011660
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Rh phenotype matching reduces but does not eliminate alloimmunization in patients with sickle cell disease (SCD) due to RH genetic diversity that is not distinguishable by serological typing. RH genotype matching can potentially mitigate Rh alloimmunization but comprehensive and accessible genotyping methods are needed. We developed RHtyper as an automated algorithm to predict RH genotypes using whole-genome sequencing (WGS) data with high accuracy. Here, we adapted RHtyper for whole-exome sequencing (WES) data, which are more affordable but challenged by uneven sequencing coverage and exacerbated sequencing read misalignment, resulting in uncertain predictions for (1) RHD zygosity and hybrid alleles, (2) RHCE*C vs. RHCE*c alleles, (3) RHD c.1136C>T zygosity, and (4) RHCE c.48G>C zygosity. We optimized RHtyper to accurately predict RHD and RHCE genotypes using WES data by leveraging machine learning models and improved the concordance of WES with WGS predictions from 90.8% to 97.2% for RHD and 96.3% to 98.2% for RHCE among 396 patients in the Sickle Cell Clinical Research and Intervention Program. In a second validation cohort of 3030 cancer survivors (15.2% Black or African Americans) from the St. Jude Lifetime Cohort Study, the optimized RHtyper reached concordance rates between WES and WGS predications to 96.3% for RHD and 94.6% for RHCE . Machine learning improved the accuracy of RH predication using WES data. RHtyper has the potential, once implemented, to provide a precision medicine-based approach to facilitate RH genotype -matched transfusion and improve transfusion safety for patients with SCD. This study used data from clinical trials registered at ClinicalTrials.gov as #NCT02098863 and NCT00760656.
引用
收藏
页码:2651 / 2659
页数:9
相关论文
共 25 条
[1]   A novel algorithm comprehensively characterizes human RH genes using whole-genome sequencing data [J].
Chang, Ti-Cheng ;
Haupfear, Kelly M. ;
Yu, Jing ;
Rampersaud, Evadnie ;
Sheehan, Vivien A. ;
Flanagan, Jonathan M. ;
Hankins, Jane S. ;
Weiss, Mitchell J. ;
Wu, Gang ;
Vege, Sunitha ;
Westhoff, Connie M. ;
Chou, Stella T. ;
Zheng, Yan .
BLOOD ADVANCES, 2020, 4 (18) :4347-4357
[2]   American Society of Hematology 2020 guidelines for sickle cell disease: transfusion support [J].
Chou, Stella T. ;
Alsawas, Mouaz ;
Fasano, Ross M. ;
Field, Joshua J. ;
Hendrickson, Jeanne E. ;
Howard, Jo ;
Kameka, Michelle ;
Kwiatkowski, Janet L. ;
Pirenne, France ;
Shi, Patricia A. ;
Stowell, Sean R. ;
Thein, Swee Lay ;
Westhoff, Connie M. ;
Wong, Trisha E. ;
Akl, Elie A. .
BLOOD ADVANCES, 2020, 4 (02) :327-355
[3]   RH genotype matching for transfusion support in sickle cell disease [J].
Chou, Stella T. ;
Evans, Perry ;
Vege, Sunitha ;
Coleman, Sarita L. ;
Friedman, David F. ;
Keller, Margaret ;
Westhoff, Connie M. .
BLOOD, 2018, 132 (11) :1198-1207
[4]   Whole-exome sequencing for RH genotyping and alloimmunization risk in children with sickle cell anemia [J].
Chou, Stella T. ;
Flanagan, Jonathan M. ;
Vege, Sunitha ;
Luban, Naomi L. C. ;
Brown, R. Clark ;
Ware, Russell E. ;
Westhoff, Connie M. .
BLOOD ADVANCES, 2017, 1 (18) :1414-1422
[5]   High prevalence of red blood cell alloimmunization in sickle cell disease despite transfusion from Rh-matched minority donors [J].
Chou, Stella T. ;
Jackson, Tannoa ;
Vege, Sunitha ;
Smith-Whitley, Kim ;
Friedman, David F. ;
Westhoff, Connie M. .
BLOOD, 2013, 122 (06) :1062-1071
[6]   Next-generation sequencing is a credible strategy for blood group genotyping [J].
Fichou, Yann ;
Audrezet, Marie-Pierre ;
Gueguen, Paul ;
Le Marechal, Cedric ;
Ferec, Claude .
BRITISH JOURNAL OF HAEMATOLOGY, 2014, 167 (04) :554-562
[7]   Clinically relevant RHD-CE genotypes in patients with sickle cell disease and in African Brazilian donors [J].
Gaspardi, Ane C. ;
Sippert, Emilia A. ;
de Macedo, Mayra Dorigan ;
Pellegrino, Jordao, Jr. ;
Costa, Fernando F. ;
Castilho, Lilian .
BLOOD TRANSFUSION, 2016, 14 (05) :449-454
[8]   Sickle Cell Clinical Research and Intervention Program (SCCRIP): A lifespan cohort study for sickle cell disease progression from the pediatric stage into adulthood [J].
Hankins, Jane S. ;
Estepp, Jeremie H. ;
Hodges, Jason R. ;
Villavicencio, Martha A. ;
Robison, Leslie L. ;
Weiss, Mitchell J. ;
Kang, Guolian ;
Schreiber, Jane E. ;
Porter, Jerlym S. ;
Kaste, Sue C. ;
Saving, Kay L. ;
Bryant, Paulette C. ;
Deyo, Jeffrey E. ;
Nottage, Kerri A. ;
King, Allison A. ;
Brandow, Amanda M. ;
Lebensburger, Jeffrey D. ;
Adesina, Oyebimpe ;
Chou, Stella T. ;
Zemel, Babette S. ;
Smeltzer, Matthew P. ;
Wang, Winfred C. ;
Gurney, James G. .
PEDIATRIC BLOOD & CANCER, 2018, 65 (09)
[9]   Cohort Profile: The St. Jude Lifetime Cohort Study (SJLIFE) for paediatric cancer survivors [J].
Howell, Carrie R. ;
Bjornard, Kari L. ;
Ness, Kirsten K. ;
Alberts, Nicole ;
Armstrong, Gregory T. ;
Bhakta, Nickhill ;
Brinkman, Tara ;
Caron, Eric ;
Chemaitilly, Wassim ;
Green, Daniel M. ;
Folse, Tim ;
Huang, I-Chan ;
Jefferies, John L. ;
Kaste, Sue ;
Krull, Kevin R. ;
Lanctot, Jennifer Q. ;
Mulrooney, Daniel A. ;
Neale, Geoffrey ;
Nichols, Kim E. ;
Sabin, Noah D. ;
Shelton, Kyla ;
Srivastava, Deo Kumar ;
Wang, Zhaoming ;
Wilson, Carmen ;
Yasui, Yutaka ;
Zaidi, Alia ;
Zhang, Jinghui ;
Robison, Leslie L. ;
Hudson, Melissa M. ;
Ehrhardt, Matthew J. .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2021, 50 (01) :39-+
[10]   Automated typing of red blood cell and platelet antigens from whole exome sequences [J].
Lane, William J. ;
Vege, Sunitha ;
Mah, Helen H. ;
Lomas-Francis, Christine ;
Aguad, Maria ;
Smeland-Wagman, Robin ;
Koch, Christopher ;
Killian, Jacqueline M. ;
Gardner, Cubby L. ;
De Castro, Mauricio ;
Lebo, Matthew S. ;
Kaufman, Richard M. ;
Green, Robert C. ;
Westhoff, Connie M. ;
Lee, Phoebe S. ;
Zehring, Amanda C. ;
Krier, Joel B. ;
Christensen, Kurt D. ;
Vassy, Jason L. ;
Maxwell, Megan ;
Blout, Carrie L. ;
Zettler, Bethany ;
McGuire, Amy ;
Pereira, Stacey ;
Robinson, Jill ;
Majumder, Mary ;
Hsu, Rebecca ;
Guiterrez, Amanda ;
Mehlman, Maxwell ;
Parasidi, Efthimios .
TRANSFUSION, 2019, 59 (10) :3253-3263