Context-Driven Interactive Query Simulations Based on Generative Large Language Models

被引:0
作者
Engelmann, Bjoern [1 ]
Breuer, Timo [1 ]
Friese, Jana Isabelle [2 ]
Schaer, Philipp [1 ]
Fuhr, Norbert [2 ]
机构
[1] Univ Appl Sci, TH Koln, Cologne, Germany
[2] Univ Duisburg Essen, Duisburg, Germany
来源
ADVANCES IN INFORMATION RETRIEVAL, ECIR 2024, PT II | 2024年 / 14609卷
关键词
User Simulation; Interactive Retrieval; Query Generation;
D O I
10.1007/978-3-031-56060-6_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Simulating user interactions enables a more user-oriented evaluation of information retrieval (IR) systems. While user simulations are cost-efficient and reproducible, many approaches often lack fidelity regarding real user behavior. Most notably, current user models neglect the user's context, which is the primary driver of perceived relevance and the interactions with the search results. To this end, this work introduces the simulation of context-driven query reformulations. The proposed query generation methods build upon recent Large Language Model (LLM) approaches and consider the user's context throughout the simulation of a search session. Compared to simple context-free query generation approaches, these methods show better effectiveness and allow the simulation of more efficient IR sessions. Similarly, our evaluations consider more interaction context than current session-based measures and reveal interesting complementary insights in addition to the established evaluation protocols. We conclude with directions for future work and provide an entirely open experimental setup.
引用
收藏
页码:173 / 188
页数:16
相关论文
共 38 条
  • [1] Can Generative LLMs Create Query Variants for Test Collections?
    Alaofi, Marwah
    Gallagher, Luke
    Sanderson, Mark
    Scholer, Falk
    Thomas, Paul
    [J]. PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 1869 - 1873
  • [2] Allan J., 2017, NIST Special Publication, V500
  • [3] Azzopardi L., 2011, SIGIR FORUM, V44, P35
  • [4] Balog K, 2024, Arxiv, DOI [arXiv:2306.08550, 10.48550/arXiv.2306.08550, DOI 10.48550/ARXIV.2306.08550]
  • [5] Sim4IR: The SIGIR 2021 Workshop on Simulation for Information Retrieval Evaluation
    Balog, Krisztian
    Maxwell, David
    Thomas, Paul
    Zhang, Shuo
    [J]. SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 2697 - 2698
  • [6] Modeling Behavioral Factors in Interactive Information Retrieval
    Baskaya, Feza
    Keskustalo, Heikki
    Jarvelin, Kalervo
    [J]. PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), 2013, : 2297 - 2302
  • [7] Validating Synthetic Usage Data in Living Lab Environments
    Breuer, Timo
    Fuhr, Norbert
    Schaer, Philipp
    [J]. ACM JOURNAL OF DATA AND INFORMATION QUALITY, 2024, 16 (01):
  • [8] Validating Simulations of User Query Variants
    Breuer, Timo
    Fuhr, Norbert
    Schaer, Philipp
    [J]. ADVANCES IN INFORMATION RETRIEVAL, PT I, 2022, 13185 : 80 - 94
  • [9] Carterette Ben, 2015, P 2015 INT C THEORY, P91, DOI [10.1145/2808194.2809470, DOI 10.1145/2808194.2809470]
  • [10] Simulating Users in Interactive Web Table Retrieval
    Engelmann, Bjoern
    Breuer, Timo
    Schaer, Philipp
    [J]. PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 3875 - 3879