Network Intrusion Detection by Variational Component-Based Feature Saliency Gaussian Mixture Clustering

被引:0
作者
Hong, Xin [1 ]
Papazachos, Zafeirios [1 ]
del Rincon, Jesus Martinez [1 ]
Miller, Paul [1 ]
机构
[1] Queens Univ Belfast, Sch Elect Elect Engn & Comp Sci, Ctr Secure Informat Technol, Belfast, Antrim, North Ireland
来源
COMPUTER SECURITY. ESORICS 2023 INTERNATIONAL WORKSHOPS, CPS4CIP, PT II | 2024年 / 14399卷
关键词
Component-based Feature Saliency; Clustering; Anomaly Detection; Network Intrusion Detection; SELECTION;
D O I
10.1007/978-3-031-54129-2_45
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection is a core function of the network intrusion detection system, and due to the high volume and dimensionality of network data, clustering is an important technique for anomaly detection in unsupervised machine learning. In this paper, we propose a clustering approach for anomaly detection on network traffic flow data. For profiling normal traffic, we apply the component-based feature saliency Gaussian mixture model. We then present a variational learning algorithm which can simultaneously optimize over the number of components, the saliencies of the features for each component, and the parameters of the mixture model. The preliminary experiments on a network intrusion dataset demonstrate the satisfying performance achieved by both our method on its own and with a data preprocessing using the auto-encoder.
引用
收藏
页码:761 / 772
页数:12
相关论文
共 26 条
[1]   Ensemble unsupervised autoencoders and Gaussian mixture model for cyberattack detection [J].
An, Peng ;
Wang, Zhiyuan ;
Zhang, Chunjiong .
INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (02)
[2]  
[Anonymous], 2021, The UNSW-NB15 Dataset
[3]   Unsupervised deep learning approach for network intrusion detection combining convolutional autoencoder and one-class SVM [J].
Binbusayyis, Adel ;
Vaiyapuri, Thavavel .
APPLIED INTELLIGENCE, 2021, 51 (10) :7094-7108
[4]   Multi-scale Self-Organizing Map assisted Deep Autoencoding Gaussian Mixture Model for unsupervised intrusion detection [J].
Chen, Yang ;
Ashizawa, Nami ;
Yeo, Chai Kiat ;
Yanai, Naoto ;
Yean, Seanglidet .
KNOWLEDGE-BASED SYSTEMS, 2021, 224
[5]  
Chen ZM, 2018, WIREL TELECOMM SYMP
[6]   Bayesian feature and model selection for Gaussian mixture models [J].
Constantinopoulos, C ;
Titsias, MK ;
Likas, A .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (06) :1013-U1
[7]   Component-Based Feature Saliency for Clustering [J].
Hong, Xin ;
Li, Hailin ;
Miller, Paul ;
Zhou, Jianjiang ;
Li, Ling ;
Crookes, Danny ;
Lu, Yonggang ;
Li, Xuelong ;
Zhou, Huiyu .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (03) :882-896
[8]   Deep clustering based on embedded auto-encoder [J].
Huang, Xuan ;
Hu, Zhenlong ;
Lin, Lin .
SOFT COMPUTING, 2023, 27 (02) :1075-1090
[9]  
Intrusion Detection Evaluation Dataset (ISCXIDS2012), about us
[10]   Simultaneous feature selection and clustering using mixture models [J].
Law, MHC ;
Figueiredo, MAT ;
Jain, AK .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (09) :1154-1166