Vehicle Heading Enhancement Based on Adaptive Sliding Window Factor Graph Optimization for Gyroscope/Magnetometer

被引:3
作者
Cui, Xufei [1 ]
Sun, Qian [1 ]
Li, Yibing [1 ]
Guo, Zheng [1 ]
Noureldin, Aboelmagd [2 ,3 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Peoples R China
[2] Royal Mil Coll Canada, Dept Elect & Comp Engn, Kingston, ON K7K 7B4, Canada
[3] Queens Univ, Sch Comp, Kingston, ON K7L 3N6, Canada
基金
中国国家自然科学基金;
关键词
Magnetometers; Gyroscopes; Magnetic separation; Interference; Soft magnetic materials; Estimation; Navigation; Adaptive sliding window; factor graph optimization (FGO); gyroscope; magnetometer; random magnetic interference; MAGNETOMETER; CALIBRATION; INTEGRATION; NOISE;
D O I
10.1109/TIM.2024.3417595
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
When employing gyroscope/magnetometer integration for vehicle heading estimation, the challenge of time-varying random magnetic interference in the environment frequently arises, resulting in reduced accuracy in heading estimation. To address this issue, this article presents an approach to enhance vehicle heading estimation based on adaptive sliding window factor graph optimization (ASWFGO) for gyroscope/magnetometer integration. The method calculates the magnetometer angular velocity by taking the differential of the magnetometer heading. It introduces the difference between the magnetometer and gyroscope angular velocities as a feature to detect random magnetic interference and applies variance threshold optimization to adaptively adjust the sliding window length. This ultimately achieves an optimal heading estimation within the sliding window. The experimental results demonstrate the effectiveness of the proposed algorithm in improving the accuracy of vehicle heading estimation in complex random magnetic interference environments.
引用
收藏
页数:14
相关论文
共 37 条
[1]   A Novel Multi-Level Integrated Navigation System for Challenging GNSS Environments [J].
Abosekeen, Ashraf ;
Iqbal, Umar ;
Noureldin, Aboelmagd ;
Korenberg, Michael J. .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (08) :4838-4852
[2]   Improving the RISS/GNSS Land-Vehicles Integrated Navigation System Using Magnetic Azimuth Updates [J].
Abosekeen, Ashraf ;
Noureldin, Aboelmagd ;
Korenberg, Michael J. .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (03) :1250-1263
[3]   High-sensitivity giant magneto-inductive magnetometer characterization implemented with a low-frequency magnetic noise-reduction technique [J].
Boukhenoufa, A ;
Dolabdjian, CP ;
Robbes, D .
IEEE SENSORS JOURNAL, 2005, 5 (05) :916-923
[4]  
Chen JB, 2020, Arxiv, DOI [arXiv:1904.02144, DOI 10.48550/ARXIV.1904.02144]
[5]  
Cui X., 2024, IEEE Trans. Instrum. Meas., V73, P1
[6]   Integrity monitoring of vehicle positioning in urban environment using RTK-GNSS, IMU and speedometer [J].
El-Mowafy, Ahmed ;
Kubo, Nobuaki .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (05)
[7]   Integration of GNSS Precise Point Positioning and Reduced Inertial Sensor System for Lane-Level Car Navigation [J].
Elsheikh, Mohamed ;
Noureldin, Aboelmagd ;
Korenberg, Michael .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (03) :2246-2261
[8]   Factor Graph Framework for Smartphone Indoor Localization: Integrating Data-Driven PDR and Wi-Fi RTT/RSS Ranging [J].
Guo, Guangyi ;
Chen, Ruizhi ;
Niu, Xiaoguang ;
Yan, Ke ;
Xu, Shihao ;
Chen, Liang .
IEEE SENSORS JOURNAL, 2023, 23 (11) :12346-12354
[9]   COMPARISON OF VALUES OF PEARSON'S AND SPEARMAN'S CORRELATION COEFFICIENTS ON THE SAME SETS OF DATA [J].
Hauke, Jan ;
Kossowski, Tomasz .
QUAESTIONES GEOGRAPHICAE, 2011, 30 (02) :87-93
[10]   An Integrated GNSS/LiDAR-SLAM Pose Estimation Framework for Large-Scale Map Building in Partially GNSS-Denied Environments [J].
He, Guojian ;
Yuan, Xingda ;
Zhuang, Yan ;
Hu, Huosheng .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70