Data-Driven Model for Improving MEG Epileptic Spike Detection

被引:0
作者
Dev, Antora [1 ]
Fouda, Mostafa M. [1 ]
Fadlullah, Zubair Md [2 ]
机构
[1] Idaho State Univ, Elect & Comp Engn, Pocatello, ID 83209 USA
[2] Western Univ, Comp Sci, London, ON, Canada
来源
2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024 | 2024年
关键词
Epileptic Seizures; Complex Continuous Wavelet Transform (CCMWT); Scalogram; Deep learning; MEG; Magnetoencephalography; CNN; VGG16; MAGNETOENCEPHALOGRAPHY; EEG;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Epilepsy is a neurological disorder characterized by spontaneous recurrent seizures, affecting over 50 million people worldwide. The prompt and accurate detection of epileptic events is crucial for effective treatment and management. Traditional methods such as Electroencephalogram (EEG) have been complemented by Magnetoencephalography (MEG), which offers superior spatial resolution due to its insensitivity to the distortive effects of the skull and scalp. This study advances the analysis of MEG data using Complex Continuous Morlet Wavelet Transform (CCMWT) for feature extraction, coupled with innovative machine learning architectures for classifying epileptic versus non-epileptic signal segments. We developed and compared a 3D Convolutional Neural Network (3D-CNN) and a VGG16 model with the Transfer learning strategy, in terms of accuracy, computational efficiency, and error rates. Our results demonstrate the VGG16 model with the Transfer learning strategy's superior performance in all cases except the computation times.
引用
收藏
页数:5
相关论文
共 15 条
  • [1] Analysis of EEG records in an epileptic patient using wavelet transform
    Adeli, H
    Zhou, Z
    Dadmehr, N
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2003, 123 (01) : 69 - 87
  • [2] Data-driven approach for the delineation of the irritative zone in epilepsy in MEG
    Chirkov, Valerii
    Kryuchkova, Anna
    Koptelova, Alexandra
    Stroganova, Tatiana
    Kuznetsova, Alexandra S.
    Kleeva, Daria S.
    Ossadtchi, Alexei S.
    Fedele, Tommaso S.
    [J]. PLOS ONE, 2022, 17 (10):
  • [3] MAGNETOENCEPHALOGRAPHY - EVIDENCE OF MAGNETIC FIELDS PRODUCED BY ALPHA-RHYTHM CURRENTS
    COHEN, D
    [J]. SCIENCE, 1968, 161 (3843) : 784 - &
  • [4] Dev A., 2023, IEEE INT C INT THING
  • [5] ILAE Official Report: A practical clinical definition of epilepsy
    Fisher, Robert S.
    Acevedo, Carlos
    Arzimanoglou, Alexis
    Bogacz, Alicia
    Cross, J. Helen
    Elger, Christian E.
    Engel, Jerome, Jr.
    Forsgren, Lars
    French, Jacqueline A.
    Glynn, Mike
    Hesdorffer, Dale C.
    Lee, B. I.
    Mathern, Gary W.
    Moshe, Solomon L.
    Perucca, Emilio
    Scheffer, Ingrid E.
    Tomson, Torbjorn
    Watanabe, Masako
    Wiebe, Samuel
    [J]. EPILEPSIA, 2014, 55 (04) : 475 - 482
  • [6] Wavelet transform analysis of heart rate variability during myocardial ischaemia
    Gamero, LG
    Vila, J
    Palacios, F
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2002, 40 (01) : 72 - 78
  • [7] MAGNETOENCEPHALOGRAPHY - THEORY, INSTRUMENTATION, AND APPLICATIONS TO NONINVASIVE STUDIES OF THE WORKING HUMAN BRAIN
    HAMALAINEN, M
    HARI, R
    ILMONIEMI, RJ
    KNUUTILA, J
    LOUNASMAA, OV
    [J]. REVIEWS OF MODERN PHYSICS, 1993, 65 (02) : 413 - 497
  • [8] Epileptic Seizure Detection Based on Time-Frequency Images of EEG Signals Using Gaussian Mixture Model and Gray Level Co-Occurrence Matrix Features
    Li, Yang
    Cui, Weigang
    Luo, Meilin
    Li, Ke
    Wang, Lina
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2018, 28 (07)
  • [9] Liner C., 2010, An overview of wavelet transform concepts and applications
  • [10] Rana MJ, 2015, INT CONF ADV ELECTR, P320, DOI 10.1109/ICAEE.2015.7506859