Efficient parameter estimation for ODE models of cellular processes using semi-quantitative data

被引:0
作者
Doresic, Domagoj [1 ,2 ]
Grein, Stephan [1 ]
Hasenauer, Jan [1 ,2 ,3 ]
机构
[1] Univ Bonn, Life & Med Sci LIMES Inst, D-53113 Bonn, Germany
[2] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Computat Biol, D-85764 Neuherberg, Germany
[3] Tech Univ Munich, Ctr Math, D-85748 Munich, Germany
关键词
D O I
10.1093/bioinformatics/btae210
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Quantitative dynamical models facilitate the understanding of biological processes and the prediction of their dynamics. The parameters of these models are commonly estimated from experimental data. Yet, experimental data generated from different techniques do not provide direct information about the state of the system but a nonlinear (monotonic) transformation of it. For such semi-quantitative data, when this transformation is unknown, it is not apparent how the model simulations and the experimental data can be compared.Results We propose a versatile spline-based approach for the integration of a broad spectrum of semi-quantitative data into parameter estimation. We derive analytical formulas for the gradients of the hierarchical objective function and show that this substantially increases the estimation efficiency. Subsequently, we demonstrate that the method allows for the reliable discovery of unknown measurement transformations. Furthermore, we show that this approach can significantly improve the parameter inference based on semi-quantitative data in comparison to available methods.Availability and implementation Modelers can easily apply our method by using our implementation in the open-source Python Parameter EStimation TOolbox (pyPESTO) available at https://github.com/ICB-DCM/pyPESTO.
引用
收藏
页码:i558 / i566
页数:10
相关论文
共 30 条
  • [1] Linear Approaches to Intramolecular Forster Resonance Energy Transfer Probe Measurements for Quantitative Modeling
    Birtwistle, Marc R.
    von Kriegsheim, Alexander
    Kida, Katarzyna
    Schwarz, Juliane P.
    Anderson, Kurt I.
    Kolch, Walter
    [J]. PLOS ONE, 2011, 6 (11):
  • [2] Identification of Isoform-Specific Dynamics in Phosphorylation-Dependent STAT5 Dimerization by Quantitative Mass Spectrometry and Mathematical Modeling
    Boehm, Martin E.
    Adlung, Lorenz
    Schilling, Marcel
    Roth, Susanne
    Klingmueller, Ursula
    Lehmann, Wolf D.
    [J]. JOURNAL OF PROTEOME RESEARCH, 2014, 13 (12) : 5685 - 5694
  • [3] Boyd S., 2004, CONVEX OPTIMIZATION
  • [4] BMP signaling in wing development: A critical perspective on quantitative image analysis
    Brooks, Alexander
    Dou, Wei
    Yang, Xiaoying
    Brosnan, Tara
    Pargett, Michael
    Raftery, Laurel A.
    Umulis, David M.
    [J]. FEBS LETTERS, 2012, 586 (14): : 1942 - 1952
  • [5] A synthetic oscillatory network of transcriptional regulators
    Elowitz, MB
    Leibler, S
    [J]. NATURE, 2000, 403 (6767) : 335 - 338
  • [6] Signaling pathway models as biomarkers: Patient-specific simulations of JNK activity predict the survival of neuroblastoma patients
    Fey, Dirk
    Halasz, Melinda
    Dreidax, Daniel
    Kennedy, Sean P.
    Hastings, Jordan F.
    Rauch, Nora
    Munoz, Amaya Garcia
    Pilkington, Ruth
    Fischer, Matthias
    Westermann, Frank
    Kolch, Walter
    Kholodenko, Boris N.
    Croucher, David R.
    [J]. SCIENCE SIGNALING, 2015, 8 (408)
  • [7] Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks
    Froehlich, Fabian
    Kaltenbacher, Barbara
    Theis, Fabian J.
    Hasenauer, Jan
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (01)
  • [8] Fides: Reliable trust-region optimization for parameter estimation of ordinary differential equation models
    Frohlich, Fabian
    Sorger, Peter
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (07)
  • [9] AMICI: high-performance sensitivity analysis for large ordinary differential equation models
    Frohlich, Fabian
    Weindl, Daniel
    Schalte, Yannik
    Pathirana, Dilan
    Paszkowski, Lukasz
    Lines, Glenn Terje
    Stapor, Paul
    Hasenauer, Jan
    [J]. BIOINFORMATICS, 2021, 37 (20) : 3676 - 3677
  • [10] Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy
    Giordano, Giulia
    Blanchini, Franco
    Bruno, Raffaele
    Colaneri, Patrizio
    Di Filippo, Alessandro
    Di Matteo, Angela
    Colaneri, Marta
    [J]. NATURE MEDICINE, 2020, 26 (06) : 855 - +