MIRROR SYMMETRY FOR DOUBLE COVER CALABI-YAU VARIETIES

被引:0
|
作者
Hosono, Shinobu [1 ]
Lee, Tsung-Ju
Lian, Bong H. [1 ]
Yau, Shing-Tung [2 ,3 ,4 ,5 ]
机构
[1] Gakushuin Univ, Dept Math, Toshima Ku, Mejiro, Tokyo 171-8588, Japan
[2] Natl Cheng Kung Univ, Dept Math, Tainan 70101, Taiwan
[3] Brandeis Univ, Dept Math, Waltham, MA 02454 USA
[4] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[5] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
关键词
PERIOD INTEGRALS; 4-PARAMETER FAMILY; K3; SURFACES; MAP; MANIFOLDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The presented paper is a continuation of the series of papers [17, 18]. In this paper, utilizing Batyrev and Borisov's duality construction on nef-partitions, we generalize the recipe in [17,18] to construct a pair of singular double cover Calabi-Yau varieties ( Y, Y (nu) ) over toric manifolds and compute their topological Euler characteristics and Hodge numbers. In the 3 -dimensional cases, we show that ( Y, Y (nu) ) forms a topological mirror pair, i.e., h (p , q) ( Y ) = h (3 - p,q) ( Y (nu) ) for all p, q .
引用
收藏
页码:409 / 431
页数:23
相关论文
共 50 条
  • [31] Superpotentials of D-branes in Calabi-Yau manifolds with several moduli by mirror symmetry and blown-up
    Li, Xuan
    Jing, Yuan-Chun
    Yang, Fu-Zhong
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (02)
  • [32] Calabi-Yau manifolds and their degenerations
    Tosatti, Valentino
    BLAVATNIK AWARDS FOR YOUNG SCIENTISTS 2011, 2012, 1260 : 8 - 13
  • [33] Mirror maps equal SYZ maps for toric Calabi-Yau surfaces
    Lau, Siu-Cheong
    Leung, Naichung Conan
    Wu, Baosen
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 : 255 - 270
  • [34] Exact Kahler potential for Calabi-Yau fourfolds
    Honma, Yoshinori
    Manabe, Masahide
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (05):
  • [35] THE CHOW GROUP OF ZERO CYCLES FOR THE QUOTIENT OF CERTAIN CALABI-YAU VARIETIES
    He, Wenchuan
    HOUSTON JOURNAL OF MATHEMATICS, 2012, 38 (01): : 55 - 67
  • [36] Remarks on Log Calabi-Yau Structure of Varieties Admitting Polarized Endomorphisms
    Broustet, Amael
    Gongyo, Yoshinori
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (03): : 569 - 582
  • [37] Patterns in Calabi-Yau Distributions
    He, Yang-Hui
    Jejjala, Vishnu
    Pontiggia, Luca
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 354 (02) : 477 - 524
  • [38] The E3/Z3 orbifold, mirror symmetry, and Hodge structures of Calabi-Yau type
    Cacciatori, Sergio Luigi
    Filippini, Sara Angela
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 138 : 70 - 89
  • [39] GROSS FIBRATIONS, SYZ MIRROR SYMMETRY, AND OPEN GROMOV-WITTEN INVARIANTS FOR TORIC CALABI-YAU ORBIFOLDS
    Chan, Kwokwai
    Cho, Cheol-Hyun
    Lau, Siu-Cheong
    Tseng, Hsian-Hua
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2016, 103 (02) : 207 - 288
  • [40] Limits of Calabi-Yau metrics when the Kahler class degenerates
    Tosatti, Valentino
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2009, 11 (04) : 755 - 776