MIRROR SYMMETRY FOR DOUBLE COVER CALABI-YAU VARIETIES
被引:0
|
作者:
Hosono, Shinobu
论文数: 0引用数: 0
h-index: 0
机构:
Gakushuin Univ, Dept Math, Toshima Ku, Mejiro, Tokyo 171-8588, JapanGakushuin Univ, Dept Math, Toshima Ku, Mejiro, Tokyo 171-8588, Japan
Hosono, Shinobu
[1
]
Lee, Tsung-Ju
论文数: 0引用数: 0
h-index: 0
机构:Gakushuin Univ, Dept Math, Toshima Ku, Mejiro, Tokyo 171-8588, Japan
Lee, Tsung-Ju
Lian, Bong H.
论文数: 0引用数: 0
h-index: 0
机构:
Gakushuin Univ, Dept Math, Toshima Ku, Mejiro, Tokyo 171-8588, JapanGakushuin Univ, Dept Math, Toshima Ku, Mejiro, Tokyo 171-8588, Japan
Lian, Bong H.
[1
]
Yau, Shing-Tung
论文数: 0引用数: 0
h-index: 0
机构:
Natl Cheng Kung Univ, Dept Math, Tainan 70101, Taiwan
Brandeis Univ, Dept Math, Waltham, MA 02454 USA
Harvard Univ, Dept Math, Cambridge, MA 02138 USA
Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R ChinaGakushuin Univ, Dept Math, Toshima Ku, Mejiro, Tokyo 171-8588, Japan
Yau, Shing-Tung
[2
,3
,4
,5
]
机构:
[1] Gakushuin Univ, Dept Math, Toshima Ku, Mejiro, Tokyo 171-8588, Japan
[2] Natl Cheng Kung Univ, Dept Math, Tainan 70101, Taiwan
[3] Brandeis Univ, Dept Math, Waltham, MA 02454 USA
[4] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[5] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
PERIOD INTEGRALS;
4-PARAMETER FAMILY;
K3;
SURFACES;
MAP;
MANIFOLDS;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The presented paper is a continuation of the series of papers [17, 18]. In this paper, utilizing Batyrev and Borisov's duality construction on nef-partitions, we generalize the recipe in [17,18] to construct a pair of singular double cover Calabi-Yau varieties ( Y, Y (nu) ) over toric manifolds and compute their topological Euler characteristics and Hodge numbers. In the 3 -dimensional cases, we show that ( Y, Y (nu) ) forms a topological mirror pair, i.e., h (p , q) ( Y ) = h (3 - p,q) ( Y (nu) ) for all p, q .