MIRROR SYMMETRY FOR DOUBLE COVER CALABI-YAU VARIETIES

被引:0
|
作者
Hosono, Shinobu [1 ]
Lee, Tsung-Ju
Lian, Bong H. [1 ]
Yau, Shing-Tung [2 ,3 ,4 ,5 ]
机构
[1] Gakushuin Univ, Dept Math, Toshima Ku, Mejiro, Tokyo 171-8588, Japan
[2] Natl Cheng Kung Univ, Dept Math, Tainan 70101, Taiwan
[3] Brandeis Univ, Dept Math, Waltham, MA 02454 USA
[4] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[5] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
关键词
PERIOD INTEGRALS; 4-PARAMETER FAMILY; K3; SURFACES; MAP; MANIFOLDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The presented paper is a continuation of the series of papers [17, 18]. In this paper, utilizing Batyrev and Borisov's duality construction on nef-partitions, we generalize the recipe in [17,18] to construct a pair of singular double cover Calabi-Yau varieties ( Y, Y (nu) ) over toric manifolds and compute their topological Euler characteristics and Hodge numbers. In the 3 -dimensional cases, we show that ( Y, Y (nu) ) forms a topological mirror pair, i.e., h (p , q) ( Y ) = h (3 - p,q) ( Y (nu) ) for all p, q .
引用
收藏
页码:409 / 431
页数:23
相关论文
共 50 条