MIRROR SYMMETRY FOR DOUBLE COVER CALABI-YAU VARIETIES

被引:0
作者
Hosono, Shinobu [1 ]
Lee, Tsung-Ju
Lian, Bong H. [1 ]
Yau, Shing-Tung [2 ,3 ,4 ,5 ]
机构
[1] Gakushuin Univ, Dept Math, Toshima Ku, Mejiro, Tokyo 171-8588, Japan
[2] Natl Cheng Kung Univ, Dept Math, Tainan 70101, Taiwan
[3] Brandeis Univ, Dept Math, Waltham, MA 02454 USA
[4] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[5] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
关键词
PERIOD INTEGRALS; 4-PARAMETER FAMILY; K3; SURFACES; MAP; MANIFOLDS;
D O I
10.4310/jdg/1717356161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The presented paper is a continuation of the series of papers [17, 18]. In this paper, utilizing Batyrev and Borisov's duality construction on nef-partitions, we generalize the recipe in [17,18] to construct a pair of singular double cover Calabi-Yau varieties ( Y, Y (nu) ) over toric manifolds and compute their topological Euler characteristics and Hodge numbers. In the 3 -dimensional cases, we show that ( Y, Y (nu) ) forms a topological mirror pair, i.e., h (p , q) ( Y ) = h (3 - p,q) ( Y (nu) ) for all p, q .
引用
收藏
页码:409 / 431
页数:23
相关论文
共 30 条
[1]   Hodge Theory of Cyclic Covers Branched over a Union of Hyperplanes [J].
Arapura, Donu .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (03) :505-524
[2]   ON THE IMBEDDING OF V-MANIFOLDS IN PROJECTIVE SPACE [J].
BAILY, WL .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (02) :403-430
[3]  
Batyrev V. V., 1994, J. Alg. Geom., V3, P493
[4]  
Batyrev V, 2008, CONTEMP MATH, V452, P35
[5]  
Batyrev Victor V., 1996, On Calabi-Yau complete intersections in toric varieties
[6]   A PAIR OF CALABI-YAU MANIFOLDS AS AN EXACTLY SOLUBLE SUPERCONFORMAL THEORY [J].
CANDELAS, P ;
DELAOSSA, XC ;
GREEN, PS ;
PARKES, L .
NUCLEAR PHYSICS B, 1991, 359 (01) :21-74
[7]  
COX D., 2011, GRADUATE STUDIES MAT, V124
[8]  
Danilov VI., 1986, Izv. Akad. Nauk SSSR Ser. Mat, V50, P925
[9]  
Dolgachev Igor, 1988, Point sets in projective spaces and theta functions, V165
[10]   LOGARITHMIC DERHAM COMPLEXES AND VANISHING THEOREMS [J].
ESNAULT, H ;
VIEHWEG, E .
INVENTIONES MATHEMATICAE, 1986, 86 (01) :161-194