EXISTENCE OF PULLBACK ATTRACTORS AND INVARIANT MEASURES FOR 3D NAVIER-STOKES-VOIGT EQUATIONS WITH DELAY

被引:2
作者
Qin, Yuming [1 ,2 ]
Jiang, Huite [1 ]
机构
[1] Donghua Univ, Sch Math & Stat, Shanghai 201620, Peoples R China
[2] Donghua Univ, Inst Nonlinear Sci, Shanghai 201620, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2025年 / 30卷 / 01期
基金
中国国家自然科学基金;
关键词
NONAUTONOMOUS 2D-NAVIER-STOKES EQUATIONS; DISSIPATIVE DYNAMICAL-SYSTEMS; STATISTICAL SOLUTIONS; GLOBAL ATTRACTORS; REGULARITY; STABILITY; BEHAVIOR; MODEL;
D O I
10.3934/dcdsb.2024087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In this paper, we study the long-time dynamics of 3D non-autonomous Navier-Stokes-Voigt(NSV) equations with delay. We first use the contractive function method to prove the pullback D-asymptotical compactness. Furthermore, we verify the existence and regularity of pullback attractors and there exists a unique family of Borel invariant probability measures which is supported by the pullback attractors.
引用
收藏
页码:243 / 264
页数:22
相关论文
共 50 条
[31]   Strong solutions for the Navier-Stokes-Voigt equations with non-negative density [J].
de Oliveira, H. B. ;
Khompysh, Kh. ;
Shakir, A. G. .
JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (04)
[32]   Pullback attractors for a class of extremal solutions of the 3D Navier-Stokes system [J].
Kapustyan, O. V. ;
Kasyanov, P. O. ;
Valero, J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) :535-547
[33]   Pull-back attractors for three-dimensional Navier-Stokes-Voigt equations in some unbounded domains [J].
Cung The Anh ;
Pham Thi Trang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (02) :223-251
[34]   ATTRACTORS FOR AUTONOMOUS AND NONAUTONOMOUS 3D NAVIER-STOKES-VOIGHT EQUATIONS [J].
Yue, Gaocheng ;
Zhong, Chengkui .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (03) :985-1002
[35]   The Periodic and Limiting Behaviors of Invariant Measures for 3D Globally Modified Navier-Stokes Equations [J].
Yang, Dandan ;
Caraballo, Tomas ;
Chen, Zhang .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (04) :3863-3883
[36]   PULLBACK ATTRACTORS AND INVARIANT MEASURES FOR DISCRETE KLEIN-GORDON-SCHRODINGER EQUATIONS [J].
Zhao, Caidi ;
Xue, Gang ;
Lukaszewicz, Grzegorz .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09) :4021-4044
[37]   Pullback Measure Attractors for Non-autonomous Stochastic 3D Globally Modified Navier-Stokes Equations [J].
Li, Ran ;
Mi, Shaoyue ;
Li, Dingshi .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (05)
[38]   Optimal Control of the Instationary Three Dimensional Navier-Stokes-Voigt Equations [J].
Cung The Anh ;
Tran Minh Nguyet .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (04) :415-439
[39]   Optimal Control of Time-Periodic Navier-Stokes-Voigt Equations [J].
Anh, Cung The ;
Nguyet, Tran Minh .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (13) :1588-1610
[40]   Theoretical results on the existence, regularity and asymptotic stability of enhanced pullback attractors: applications to 3D primitive equations [J].
Wang, Renhai ;
Guo, Boling ;
Huang, Daiwen .
ACTA MATHEMATICA SCIENTIA, 2023, 43 (06) :2493-2518