EXISTENCE OF PULLBACK ATTRACTORS AND INVARIANT MEASURES FOR 3D NAVIER-STOKES-VOIGT EQUATIONS WITH DELAY

被引:0
作者
Qin, Yuming [1 ,2 ]
Jiang, Huite [1 ]
机构
[1] Donghua Univ, Sch Math & Stat, Shanghai 201620, Peoples R China
[2] Donghua Univ, Inst Nonlinear Sci, Shanghai 201620, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2025年 / 30卷 / 01期
基金
中国国家自然科学基金;
关键词
NONAUTONOMOUS 2D-NAVIER-STOKES EQUATIONS; DISSIPATIVE DYNAMICAL-SYSTEMS; STATISTICAL SOLUTIONS; GLOBAL ATTRACTORS; REGULARITY; STABILITY; BEHAVIOR; MODEL;
D O I
10.3934/dcdsb.2024087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In this paper, we study the long-time dynamics of 3D non-autonomous Navier-Stokes-Voigt(NSV) equations with delay. We first use the contractive function method to prove the pullback D-asymptotical compactness. Furthermore, we verify the existence and regularity of pullback attractors and there exists a unique family of Borel invariant probability measures which is supported by the pullback attractors.
引用
收藏
页码:243 / 264
页数:22
相关论文
共 50 条