EXISTENCE OF PULLBACK ATTRACTORS AND INVARIANT MEASURES FOR 3D NAVIER-STOKES-VOIGT EQUATIONS WITH DELAY

被引:2
作者
Qin, Yuming [1 ,2 ]
Jiang, Huite [1 ]
机构
[1] Donghua Univ, Sch Math & Stat, Shanghai 201620, Peoples R China
[2] Donghua Univ, Inst Nonlinear Sci, Shanghai 201620, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2025年 / 30卷 / 01期
基金
中国国家自然科学基金;
关键词
NONAUTONOMOUS 2D-NAVIER-STOKES EQUATIONS; DISSIPATIVE DYNAMICAL-SYSTEMS; STATISTICAL SOLUTIONS; GLOBAL ATTRACTORS; REGULARITY; STABILITY; BEHAVIOR; MODEL;
D O I
10.3934/dcdsb.2024087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In this paper, we study the long-time dynamics of 3D non-autonomous Navier-Stokes-Voigt(NSV) equations with delay. We first use the contractive function method to prove the pullback D-asymptotical compactness. Furthermore, we verify the existence and regularity of pullback attractors and there exists a unique family of Borel invariant probability measures which is supported by the pullback attractors.
引用
收藏
页码:243 / 264
页数:22
相关论文
共 54 条
[1]  
Adams R., 1975, Sobolev spaces
[2]  
Ball JM, 2004, DISCRETE CONT DYN-A, V10, P31
[3]   Suitable weak solutions to the 3D Navier-Stokes equations are constructed with the Voigt approximation [J].
Berselli, Luigi C. ;
Spirito, Stefano .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (05) :3285-3316
[4]   ANALYSIS OF A REDUCED-ORDER APPROXIMATE DECONVOLUTION MODEL AND ITS INTERPRETATION AS A NAVIER-STOKES-VOIGT REGULARIZATION [J].
Berselli, Luigi C. ;
Kim, Tae-Yeon ;
Rebholz, Leo G. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (04) :1027-1050
[5]   On the structural stability of the Euler-Voigt and Navier-Stokes-Voigt models [J].
Berselli, Luigi C. ;
Bisconti, Luca .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (01) :117-130
[6]   Abstract framework for the theory of statistical solutions [J].
Bronzi, A. C. ;
Mondaini, C. F. ;
Rosa, R. M. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (12) :8428-8484
[7]  
Cao YP, 2006, COMMUN MATH SCI, V4, P823
[8]   Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains [J].
Caraballo, T ;
Lukaszewicz, G ;
Real, J .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (04) :263-268
[9]   Pullback attractors for asymptotically compact non-autonomous dynamical systems [J].
Caraballo, T ;
Lukaszewicz, G ;
Real, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (03) :484-498
[10]   Long time dynamics for functional three-dimensional Navier-Stokes-Voigt equations [J].
Caraballo, T. ;
Marquez-Duran, A. M. .
AIMS MATHEMATICS, 2020, 5 (06) :5470-5494