EXISTENCE OF PULLBACK ATTRACTORS AND INVARIANT MEASURES FOR 3D NAVIER-STOKES-VOIGT EQUATIONS WITH DELAY

被引:0
|
作者
Qin, Yuming [1 ,2 ]
Jiang, Huite [1 ]
机构
[1] Donghua Univ, Sch Math & Stat, Shanghai 201620, Peoples R China
[2] Donghua Univ, Inst Nonlinear Sci, Shanghai 201620, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2025年 / 30卷 / 01期
基金
中国国家自然科学基金;
关键词
NONAUTONOMOUS 2D-NAVIER-STOKES EQUATIONS; DISSIPATIVE DYNAMICAL-SYSTEMS; STATISTICAL SOLUTIONS; GLOBAL ATTRACTORS; REGULARITY; STABILITY; BEHAVIOR; MODEL;
D O I
10.3934/dcdsb.2024087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In this paper, we study the long-time dynamics of 3D non-autonomous Navier-Stokes-Voigt(NSV) equations with delay. We first use the contractive function method to prove the pullback D-asymptotical compactness. Furthermore, we verify the existence and regularity of pullback attractors and there exists a unique family of Borel invariant probability measures which is supported by the pullback attractors.
引用
收藏
页码:243 / 264
页数:22
相关论文
共 50 条
  • [1] INVARIANT MEASURES FOR THE 3D NAVIER-STOKES-VOIGT EQUATIONS AND THEIR NAVIER-STOKES LIMIT
    Ramos, Fabio
    Titi, Edriss S.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (01) : 375 - 403
  • [2] A GENERALIZED EXISTENCE THEOREM OF PULLBACK ATTRACTORS AND ITS APPLICATION TO THE 3D NON-AUTONOMOUS NAVIER-STOKES-VOIGT EQUATIONS
    Qin, Yuming
    Jiang, Huite
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2025,
  • [3] Existence and regularity of pullback attractors for a 3D non-autonomous Navier-Stokes-Voigt model with finite delay
    Garcia-Luengo, Julia
    Marin-Rubio, Pedro
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2024, (14) : 1 - 35
  • [4] Pullback dynamics and robustness for the 3D Navier-Stokes-Voigt equations with memory
    Su, Keqin
    Yang, Rong
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (02): : 928 - 946
  • [5] Stabilization of 3D Navier-Stokes-Voigt equations
    Cung The Anh
    Nguyen Viet Tuan
    GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (04) : 493 - 502
  • [6] Pullback attractors of 2D Navier-Stokes-Voigt equations with delay on a non-smooth domain
    Su, Keqin
    Zhao, Mingxia
    Cao, Jie
    BOUNDARY VALUE PROBLEMS, 2015, : 1 - 27
  • [7] Pullback attractors for three-dimensional Navier-Stokes-Voigt equations with delays
    Li, Haiyan
    Qin, Yuming
    BOUNDARY VALUE PROBLEMS, 2013, : 1 - 17
  • [8] UNIFORM ATTRACTORS OF 3D NAVIER-STOKES-VOIGT EQUATIONS WITH MEMORY AND SINGULARLY OSCILLATING EXTERNAL FORCES
    Cung The Anh
    Dang Thi Phuong Thanh
    Nguyen Duong Toan
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (01): : 1 - 23
  • [9] GROMOV-HAUSDORFF STABILITY OF GLOBAL ATTRACTORS FOR THE 3D INCOMPRESSIBLE NAVIER-STOKES-VOIGT EQUATIONS
    Wang, Dongze
    Yang, Xin-guang
    Miranville, Alain
    Yan, Xingjie
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (11): : 4646 - 4670
  • [10] Upper bounds on the number of determining nodes for 3D Navier-Stokes-Voigt equations
    Vu Manh Toi
    Nguyen Thi Ngan
    ANNALES POLONICI MATHEMATICI, 2020, 125 (01) : 83 - 99