Vision-Based Marker-Less Landing of an Unmanned Aerial System on Moving Ground Vehicle

被引:0
|
作者
Krpec, Blake [1 ,4 ]
Valasek, John [2 ]
Nogar, Stephen [3 ]
机构
[1] Texas A&M Univ, Coll Stn, TX 77843 USA
[2] Texas A&M Univ, Aerosp Engn Dept, Vehicle Syst & Control Lab, College Stn, TX 77843 USA
[3] DEVCOM Army Res Lab, Aberdeen Proving Ground, MD 21005 USA
[4] Southwest Res Inst, Intelligent Syst Div, Robot Auton Sect, San Antonio, TX 78238 USA
来源
JOURNAL OF AEROSPACE INFORMATION SYSTEMS | 2024年 / 21卷 / 09期
关键词
Unmanned Ground Vehicle; Image Processing; Artificial Neural Network; Vision Based Landing; Unmanned Aerial Systems; Flight Control Surfaces; Extended Kalman Filter; Autopilot; Computing and Informatics; Embedded Computing System; TRACKING; UAV;
D O I
10.2514/1.I011282
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Current autonomous unmanned aerial systems (UASs) commonly use vision-based landing solutions that depend upon fiducial markers to localize a static or mobile landing target relative to the UAS. This paper develops and demonstrates an alternative method to fiducial markers with a combination of neural-network-based object detection and camera intrinsic properties to localize an unmanned ground vehicle (UGV) and enable autonomous landing. Implementing this visual approach is challenging given the limited compute power on board the UAS, but it is relevant for autonomous landings on targets for which affixing a fiducial marker a priori is not possible or not practical. The position estimate of the UGV is used to formulate a landing trajectory that is then input to the flight controller. Algorithms are tailored toward low size, weight, and power constraints, as all compute and sensing components weigh less than 100 g. Landings were successfully demonstrated in both simulation and experimentally on a UGV traveling in both a straight line and while turning. Simulation landings were successful at UGV speeds of up to 3.0 m/s, and experimental landings at speeds up to 1.0 m/s.
引用
收藏
页码:735 / 750
页数:16
相关论文
共 50 条
  • [31] Autonomous tracking and landing of an unmanned aerial vehicle on a ground vehicle in rough terrain
    Aoki, Nobuaki
    Ishigami, Genya
    ADVANCED ROBOTICS, 2023, 37 (05) : 344 - 355
  • [32] A Vision based Landing Spot Searching for Unmanned Aerial Vehicle using Satellite Image
    Keunyoung, Park
    Doohyun, Kim
    Dongwoon, Jeon
    2015 4TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION ICIEV 15, 2015,
  • [33] Autonomous, Onboard Vision-Based Trash and Litter Detection in Low Altitude Aerial Images Collected by an Unmanned Aerial Vehicle
    Kraft, Marek
    Piechocki, Mateusz
    Ptak, Bartosz
    Walas, Krzysztof
    REMOTE SENSING, 2021, 13 (05) : 1 - 17
  • [34] Vision-based Autonomous Landing Control for Unmanned Helicopters
    Marantos, Panos
    Karras, George C.
    Vlantis, Panagiotis
    Kyriakopoulos, Kostas J.
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2018, 92 (01) : 145 - 158
  • [35] Vision System of Unmanned Ground Vehicle
    Moon, Hee Chang
    Min, Kyoung Moo
    Kim, Jung Ha
    2008 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS, VOLS 1-4, 2008, : 522 - 526
  • [36] Rotorcraft aerial vehicle's contact-based landing and vision-based localization research
    Meng, Xiangdong
    Xi, Haoyang
    Wei, Jinghe
    He, Yuqing
    Han, Jianda
    Song, Aiguo
    ROBOTICA, 2023, 41 (04) : 1127 - 1144
  • [37] BOUNDED-INPUT CONTROL OF THE QUADROTOR UNMANNED AERIAL VEHICLE: A VISION-BASED APPROACH
    Asl, Hamed Jabbari
    Yoon, Jungwon
    ASIAN JOURNAL OF CONTROL, 2017, 19 (03) : 840 - 855
  • [38] Adaptive vision-based control of an unmanned aerial vehicle without linear velocity measurements
    Asl, Hamed Jabbari
    Yoon, Jungwon
    ISA TRANSACTIONS, 2016, 65 : 296 - 306
  • [39] VISION-BASED AUTONOMOUS INSPECTION OF VERTICAL STRUCTURES USING UNMANNED AERIAL VEHICLE (UAV)
    Gupta, Ayush
    Shukla, Amit
    Kumar, Amit
    Sivarathri, Ashok Kumar
    PROCEEDINGS OF ASME 2022 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2022, VOL 3, 2022,
  • [40] Vision-Based Hardware-in-the-Loop-Simulation for Unmanned Aerial Vehicles
    Khoa Dang Nguyen
    Ha, Cheolkeun
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, PT I, 2018, 10954 : 72 - 83