Experimental and Numerical Characterization of Granular Material Until Shock Loading

被引:2
作者
Ruiz-Ripoll, M. L. [1 ]
Riedel, W. [2 ]
Stocchi, A. [1 ]
Bagusat, F. [2 ]
Schmitt, D. [1 ]
Sauer, M. [2 ]
Roller, C. [1 ]
Stolz, A. [1 ]
机构
[1] Fraunhofer Inst High Speed Dynam, Ernst Mach Inst, EMI, Klingelberg 1, D-79588 Efringen Kirchen, Germany
[2] Fraunhofer Inst High Speed Dynam, Ernst Mach Inst, EMI, Ernst Zermelo Str, D-79100 Freiburg, Germany
关键词
Dynamic strength; Shock compression; Split Hopkinson bar; Granular material; Numerical modeling; SOIL BEHAVIOR; SAND; INTERFEROMETER; CONCRETE; EQUATION; STATE;
D O I
10.1007/s40870-024-00428-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work describes the characterization of two different granular materials, a fine cohesive and a coarse cohesionless soil, with regard to their behavior under high-rate loading. The conditions range from quasi-static ( 10 5 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>{5}$$\end{document} s - 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{-1}$$\end{document} ) to dynamic strength ( 10 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>{2}$$\end{document} s - 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{-1}$$\end{document} ) using a standard press and a Split-Hopkinson Bar (SHB) with a triaxial pressure cell. Furthermore, shock compression ( 10 5 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>{5}$$\end{document} s - 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{-1}$$\end{document} ) is investigated in a newly developed plate impact capsule. The experimental data is used to parameterize both types of soils with two different dynamic material descriptions, a simple model with Drucker-Prager Strength and p- alpha \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upalpha$$\end{document} EOS and, partly extending from there, a model with piecewise linear dependencies for both volumetric compaction and strength. The reproduction quality of both material models is quantitatively assessed using Finite Element simulations of the dynamic tests and discussed. They can potentially serve in future numerical analyses of complex transient dynamic events, such as explosively-driven ground shock or high-velocity penetration into the soil.
引用
收藏
页码:45 / 69
页数:25
相关论文
共 57 条
[21]   Parameterization of the porous-material model for sand with different levels of water saturation [J].
Grujicic, M. ;
Pandurangan, B. ;
Qiao, R. ;
Cheeseman, B. A. ;
Roy, W. N. ;
Skaggs, R. R. ;
Gupta, R. .
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2008, 28 (01) :20-35
[22]  
Hansen C., 2016, Journal of Dynamic Behavior of Materials, V2, P306, DOI [10.1007/s40870-016-0067-1, DOI 10.1007/S40870-016-0067-1]
[23]   VELOCITY SENSING INTERFEROMETER (VISAR) MODIFICATION [J].
HEMSING, WF .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1979, 50 (01) :73-78
[24]   CONSTITUTIVE EQUATION FOR DYNAMIC COMPACTION OF DUCTILE POROUS MATERIALS [J].
HERRMANN, W .
JOURNAL OF APPLIED PHYSICS, 1969, 40 (06) :2490-&
[25]   Effect of Sample Size on the Behavior of Granular Materials [J].
Hu, Wei ;
Dano, Christophe ;
Hicher, Pierre-Yves ;
Le Touzo, Jean-Yves ;
Derkx, Francois ;
Merliot, Erick .
GEOTECHNICAL TESTING JOURNAL, 2011, 34 (03) :186-197
[26]  
Huy N.Q., 2006, LAB INVESTIGATION LO
[27]  
Jefferies M.G., 1990, P 43 CANADIAN GEOTEC, V1, P263
[28]  
Kabir M.E., 2011, Dynamic Behavior of Materials, V1, P7, DOI [10.1007/978-1-4419-8228-5_2, DOI 10.1007/978-1-4419-8228-52]
[29]  
Klomfass A, 1999, RECHENMODELLE WAFFEN
[30]  
Laine L., 2001, P 4 AS PAC C SHOCK I, P361