Decentralized Sum-of-Nonconvex Optimization

被引:0
|
作者
Liu, Zhuanghua [1 ,2 ]
Low, Bryan Kian Hsiang [1 ]
机构
[1] Natl Univ Singapore, Dept Comp Sci, Singapore, Singapore
[2] CNRS CREATE LTD, 1 Create Way,08-01 CREATE Tower, Singapore 138602, Singapore
来源
THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 13 | 2024年
基金
新加坡国家研究基金会;
关键词
ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the optimization problem of minimizing the sum-of-nonconvex function, i.e., a convex function that is the average of nonconvex components. The existing stochastic algorithms for such a problem only focus on a single machine and the centralized scenario. In this paper, we study the sum-of-nonconvex optimization in the decentralized setting. We present a new theoretical analysis of the PMGTSVRG algorithm for this problem and prove the linear convergence of their approach. However, the convergence rate of the PMGT-SVRG algorithm has a linear dependency on the condition number, which is undesirable for the ill-conditioned problem. To remedy this issue, we propose an accelerated stochastic decentralized first-order algorithm by incorporating the techniques of acceleration, gradient tracking, and multi-consensus mixing into the SVRG algorithm. The convergence rate of the proposed method has a square-root dependency on the condition number. The numerical experiments validate the theoretical guarantee of our proposed algorithms on both synthetic and real-world datasets.
引用
收藏
页码:14088 / 14096
页数:9
相关论文
共 50 条
  • [1] FAST DECENTRALIZED NONCONVEX FINITE-SUM OPTIMIZATION WITH RECURSIVE VARIANCE REDUCTION
    Xin, Ran
    Khan, Usman A.
    Kar, Soummya
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (01) : 1 - 28
  • [2] ON THE DIVERGENCE OF DECENTRALIZED NONCONVEX OPTIMIZATION
    Hong, M. I. N. G. Y. I.
    Zeng, S. I. L. I. A. N. G.
    Zhang, J. U. N. Y. U.
    Sun, H. A. O. R. A. N.
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (04) : 2879 - 2908
  • [3] On Nonconvex Decentralized Gradient Descent
    Zeng, Jinshan
    Yin, Wotao
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (11) : 2834 - 2848
  • [4] A gradient-free distributed optimization method for convex sum of nonconvex cost functions
    Pang, Yipeng
    Hu, Guoqiang
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2022, 32 (14) : 8086 - 8101
  • [5] ADAPTIVE FISTA FOR NONCONVEX OPTIMIZATION
    Ochs, Peter
    Pock, Thomas
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) : 2482 - 2503
  • [6] Nonconvex Optimization for Communication Networks
    Chiang, Mung
    ADVANCES IN APPLIED MATHEMATICS AND GLOBAL OPTIMIZATION, 2009, 17 : 137 - 196
  • [7] GEOM-SPIDER-EM: FASTER VARIANCE REDUCED STOCHASTIC EXPECTATION MAXIMIZATION FOR NONCONVEX FINITE-SUM OPTIMIZATION
    Fort, Gersende
    Moulines, Eric
    Wai, Hoi-To
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3135 - 3139
  • [8] A hybrid stochastic optimization framework for composite nonconvex optimization
    Quoc Tran-Dinh
    Pham, Nhan H.
    Phan, Dzung T.
    Nguyen, Lam M.
    MATHEMATICAL PROGRAMMING, 2022, 191 (02) : 1005 - 1071
  • [9] Communication Compression for Distributed Nonconvex Optimization
    Yi, Xinlei
    Zhang, Shengjun
    Yang, Tao
    Chai, Tianyou
    Johansson, Karl Henrik
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (09) : 5477 - 5492
  • [10] DISTRIBUTED NONCONVEX OPTIMIZATION FOR SPARSE REPRESENTATION
    Sun, Ying
    Scutari, Gesualdo
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4044 - 4048