Initial data identification in space dependent conservation laws and Hamilton-Jacobi equations

被引:1
|
作者
Colombo, Rinaldo M. [1 ,2 ]
Perrollaz, Vincent [3 ]
Sylla, Abraham [4 ]
机构
[1] Univ Brescia, INdAM Unit, Brescia, Italy
[2] Univ Brescia, Dept Informat Engn, Brescia, Italy
[3] Univ Orleans, Univ Tours, CNRS UMR 7013, Inst Denis Poisson, Orleans, France
[4] Univ Milano Bicocca, Dept Math & Applicat, Milan, Italy
关键词
Inverse design for hyperbolic equations; Conservation Laws; Hamilton-Jacobi equation; optimal control problem; VISCOSITY SOLUTIONS; ATTAINABLE SET; SINGULARITIES; SYSTEMS;
D O I
10.1080/03605302.2024.2348047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a Conservation Law and a Hamilton-Jacobi equation with a flux/Hamiltonian depending also on the space variable. We characterize first the attainable set of the two equations and, second, the set of initial data evolving at a prescribed time into a prescribed profile. An explicit example then shows the deep differences between the cases of x-independent and x-dependent fluxes/Hamiltonians.
引用
收藏
页码:470 / 504
页数:35
相关论文
共 50 条
  • [31] On shock generation for Hamilton-Jacobi equations
    Stromberg, Thomas
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2009, 20 (04): : 619 - 629
  • [32] Metric character of Hamilton-Jacobi equations
    Siconolfi, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (05) : 1987 - 2009
  • [33] GENERALIZED CHARACTERISTICS OF HAMILTON-JACOBI EQUATIONS
    SUBBOTIN, AI
    TARASYEV, AM
    USHAKOV, VN
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 1994, 32 (02) : 157 - 163
  • [34] The relaxing schemes for Hamilton-Jacobi equations
    Tang, HZ
    Wu, HM
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2001, 19 (03) : 231 - 240
  • [35] HOMOGENIZATION OF METRIC HAMILTON-JACOBI EQUATIONS
    Oberman, Adam M.
    Takei, Ryo
    Vladimirsky, Alexander
    MULTISCALE MODELING & SIMULATION, 2009, 8 (01) : 269 - 295
  • [36] Hypercontractivity of Solutions to Hamilton-Jacobi Equations
    Beniamin Goldys
    Czechoslovak Mathematical Journal, 2001, 51 : 733 - 743
  • [37] Coupled Scheme for Hamilton-Jacobi Equations
    Sahu, Smita
    THEORY, NUMERICS AND APPLICATIONS OF HYPERBOLIC PROBLEMS II, 2018, 237 : 563 - 576
  • [38] Splitting methods for Hamilton-Jacobi equations
    Tourin, A
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (02) : 381 - 396
  • [39] Singularities of Solutions of Hamilton-Jacobi Equations
    Cannarsa, Piermarco
    Cheng, Wei
    MILAN JOURNAL OF MATHEMATICS, 2021, 89 (01) : 187 - 215
  • [40] Hamilton-Jacobi equations constrained on networks
    Achdou, Yves
    Camilli, Fabio
    Cutri, Alessandra
    Tchou, Nicoletta
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (03): : 413 - 445