共 50 条
Initial data identification in space dependent conservation laws and Hamilton-Jacobi equations
被引:1
|作者:
Colombo, Rinaldo M.
[1
,2
]
Perrollaz, Vincent
[3
]
Sylla, Abraham
[4
]
机构:
[1] Univ Brescia, INdAM Unit, Brescia, Italy
[2] Univ Brescia, Dept Informat Engn, Brescia, Italy
[3] Univ Orleans, Univ Tours, CNRS UMR 7013, Inst Denis Poisson, Orleans, France
[4] Univ Milano Bicocca, Dept Math & Applicat, Milan, Italy
关键词:
Inverse design for hyperbolic equations;
Conservation Laws;
Hamilton-Jacobi equation;
optimal control problem;
VISCOSITY SOLUTIONS;
ATTAINABLE SET;
SINGULARITIES;
SYSTEMS;
D O I:
10.1080/03605302.2024.2348047
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Consider a Conservation Law and a Hamilton-Jacobi equation with a flux/Hamiltonian depending also on the space variable. We characterize first the attainable set of the two equations and, second, the set of initial data evolving at a prescribed time into a prescribed profile. An explicit example then shows the deep differences between the cases of x-independent and x-dependent fluxes/Hamiltonians.
引用
收藏
页码:470 / 504
页数:35
相关论文