A Few-Shot Class-Incremental Learning Method for Network Intrusion Detection

被引:13
作者
Du, Lei [1 ,2 ]
Gu, Zhaoquan [1 ,2 ]
Wang, Ye [1 ,3 ]
Wang, Le [4 ]
Jia, Yan [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518055, Guangdong, Peoples R China
[2] Dept New Networks, Peng Cheng Lab, Shenzhen 518055, Guangdong, Peoples R China
[3] Natl Univ Def Technol, Coll Comp, Changsha 410073, Peoples R China
[4] Guangzhou Univ, Cyberspace Inst Adv Technol, Guangzhou 510006, Peoples R China
来源
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT | 2024年 / 21卷 / 02期
基金
中国国家自然科学基金;
关键词
Feature extraction; Network intrusion detection; Power capacitors; Telecommunication traffic; Training; Task analysis; Prototypes; Cyber security; network intrusion detection; few-shot class-incremental learning;
D O I
10.1109/TNSM.2023.3332284
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of information technologies, the security of cyberspace has become increasingly serious. Network intrusion detection is a practical scheme to protect network systems from cyber attacks. However, as new vulnerabilities and unknown attack types are constantly emerging, only a few samples of such attacks can be captured for analysis, which cannot be handled by the existing detection methods deployed in real systems. To handle this problem, we propose a few-shot class-incremental learning method called Branch Fusion Strategy based Network Intrusion Detection (BFS-NID for short), which can continuously learn new attack classes with only a few samples. BFS-NID includes a feature extractor module and a branch classifier learning module. The feature extractor module uses a vision transformer to learn better feature representations in a self-supervised manner, and the parameters of the feature extractor are fixed to avoid catastrophic forgetting when the model learns incrementally. The branch classifier learning module sets re-projection for different branch sessions to enhance the feature representation ability between classes and employs a branch fusion strategy to associate the context of learned attack classes with new classes in different sessions. We conducted extensive experiments on two popular network intrusion detection benchmark datasets (CIC-IDS2017 and CSE-CIC-IDS2018) and the results demonstrate that BFS-NID surpasses the baselines and achieves the best performance.
引用
收藏
页码:2389 / 2401
页数:13
相关论文
共 50 条
  • [21] Incrementally Learned Angular Representations for Few-Shot Class-Incremental Learning
    Yoon, In-Ug
    Kim, Jong-Hwan
    IEEE ACCESS, 2023, 11 : 140626 - 140635
  • [22] Improved Continually Evolved Classifiers for Few-Shot Class-Incremental Learning
    Wang, Ye
    Zhao, Guoshuai
    Qian, Xueming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (02) : 1123 - 1134
  • [23] Causal Inference-based Few-Shot Class-Incremental Learning
    Zhou, Weiwei
    Xiao, Guoqiang
    Lew, Michael S.
    Wu, Song
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 478 - 487
  • [24] CLOSER: Towards Better Representation Learning for Few-Shot Class-Incremental Learning
    Oh, Junghun
    Baik, Sungyong
    Lee, Kyoung Mu
    COMPUTER VISION - ECCV 2024, PT XLIX, 2025, 15107 : 18 - 35
  • [25] FeCoGraph: Label-Aware Federated Graph Contrastive Learning for Few-Shot Network Intrusion Detection
    Mao, Qinghua
    Lin, Xi
    Xu, Wenchao
    Qi, Yuxin
    Su, Xiu
    Li, Gaolei
    Li, Jianhua
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 2266 - 2280
  • [26] Uncertainty-Guided Semi-Supervised Few-Shot Class-Incremental Learning With Knowledge Distillation
    Cui, Yawen
    Deng, Wanxia
    Xu, Xin
    Liu, Zhen
    Liu, Zhong
    Pietikainen, Matti
    Liu, Li
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6422 - 6435
  • [27] Semantic-visual Guided Transformer for Few-shot Class-incremental Learning
    Qiu, Wenhao
    Fu, Sichao
    Zhang, Jingyi
    Lei, Chengxiang
    Peng, Qinmu
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2885 - 2890
  • [28] Sharpness-aware gradient guidance for few-shot class-incremental learning
    Chen, Runhang
    Jing, Xiao-Yuan
    Wu, Fei
    Chen, Haowen
    KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [29] NTK-Guided Few-Shot Class Incremental Learning
    Liu, Jingren
    Ji, Zhong
    Pang, Yanwei
    Yu, Yunlong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 6029 - 6044
  • [30] A Forward and Backward Compatible Framework for Few-Shot Class-Incremental Pill Recognition
    Zhang, Jinghua
    Liu, Li
    Gao, Kai
    Hu, Dewen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,