On a new class of Φ-Caputo-type fractional differential Langevin equations involving the p-Laplacian operator

被引:0
作者
Lmou, Hamid [1 ]
Hilal, Khalid [1 ]
Kajouni, Ahmed [1 ]
机构
[1] Sultan Moulay Slimane Univ, Lab Appl Math & Sci Comp, Beni Mellal, Morocco
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2024年 / 30卷 / 02期
关键词
Phi-Caputo fractional derivative; Schaefer's fixed point theorem; Phi-Caputo fractional differential Langevin equations; p-Laplacian operator; Langevin equation; BOUNDARY-VALUE-PROBLEMS; HYERS-ULAM STABILITY; EXISTENCE THEOREMS; SOLVABILITY;
D O I
10.1007/s40590-024-00641-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims to investigate the existence result for a new class of Phi-Caputo-type fractional differential Langevin equation involving the p-Laplacian operator. We develop these result with the help of the theory of p-Laplacian operator, and by making use of some basic proprieties of fractional calculus. By applying Schaefer's fixed point theorem, we established the existence result. As application, we give an example to demonstrate our theoretical result.
引用
收藏
页数:17
相关论文
共 47 条
  • [1] Abdo MS, 2019, P INDIAN AS-MATH SCI, V129, DOI 10.1007/s12044-019-0514-8
  • [2] Further extended Caputo fractional derivative operator and its applications
    Agarwal, P.
    Jain, S.
    Mansour, T.
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2017, 24 (04) : 415 - 425
  • [3] Solvability of a Non-local Problem with Integral Transmitting Condition for Mixed Type Equation with Caputo Fractional Derivative
    Agarwal, Praveen
    Berdyshev, Abdumauvlen
    Karimov, Erkinjon
    [J]. RESULTS IN MATHEMATICS, 2017, 71 (3-4) : 1235 - 1257
  • [4] FRACTIONAL CALCULUS OPERATORS AND THEIR IMAGE FORMULAS
    Agarwal, Praveen
    Choi, Junesang
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (05) : 1183 - 1210
  • [5] Almeida R, 2019, RACSAM REV R ACAD A, V113, P1873, DOI 10.1007/s13398-018-0590-0
  • [6] Fractional differential equations with a Caputo derivative with respect to a Kernel function and their applications
    Almeida, Ricardo
    Malinowska, Agnieszka B.
    Monteiro, M. Teresa T.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (01) : 336 - 352
  • [7] [Anonymous], 1983, Izv. Akad. Nauk Kirg. SSR, Ser. Biol. Nauk
  • [8] NONLOCAL BOUNDARY VALUE PROBLEMS FOR HILFER FRACTIONAL DIFFERENTIAL EQUATIONS
    Asawasamrit, Suphawat
    Kijjathanakorn, Atthapol
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (06) : 1639 - 1657
  • [9] Bazhlekova E., 2001, Fractional evolution equations in Banach spaces
  • [10] Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives
    Bedi, Pallavi
    Kumar, Anoop
    Khan, Aziz
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 150