Harnessing food waste potential: Biochar driven waste to energy conversion for methane generation

被引:3
作者
Pradeshwaran, Vijayakumar [1 ,2 ]
Saravanakumar, Ayyadurai [1 ]
机构
[1] SRM Inst Sci & Technol, Ctr Res Environm Sustainabil Advocacy & Climate Ch, Directorate Res & Virtual Educ, Kattankulathur 603203, Tamil Nadu, India
[2] SRM Inst Sci & Technol, Dept Chem, Kattankulathur 603203, Tamil Nadu, India
关键词
Affordable and clean energy; Enhancing bio methanation; Food waste; Biochar potential; ANAEROBIC-DIGESTION; BIOGAS PRODUCTION; CO-DIGESTION; CHALLENGES; PYROLYSIS; MANURE;
D O I
10.1016/j.seta.2024.103901
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study explored the optimization of anaerobic digestion (AD) of organic wastes through the strategic integration of electrically conductive biochar particles. Electrically conductive biochar facilitated electron transfer among microbial populations, enhancing methane production in AD systems. The research investigated microbial profiles, metabolic pathways, and physicochemical factors to elucidate the mechanisms underlying enhanced methane generation. By strategically incorporating biochar, this study enhanced understanding of its pivotal role in optimizing complex microbiological processes within AD systems. The findings underscored biochar's critical role in enhancing the effectiveness and adaptability of AD systems, thereby advancing environmentally friendly waste-to-energy technologies. This research advocated for innovative biochar-based solutions to address contemporary challenges in waste management and renewable energy production, emphasizing a significant 11% increase in methane production compared to traditional methods.
引用
收藏
页数:8
相关论文
共 41 条
[1]   Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water [J].
Ahmad, Mahtab ;
Lee, Sang Soo ;
Dou, Xiaomin ;
Mohan, Dinesh ;
Sung, Jwa-Kyung ;
Yang, Jae E. ;
Ok, Yong Sik .
BIORESOURCE TECHNOLOGY, 2012, 118 :536-544
[2]   A review on recent technological breakthroughs in anaerobic digestion of organic biowaste for biogas generation: Challenges towards sustainable development goals [J].
Archana, K. ;
Visckram, A. S. ;
Kumar, P. Senthil ;
Manikandan, S. ;
Saravanan, A. ;
Natrayan, L. .
FUEL, 2024, 358
[3]   An overview of microbial biogas enrichment [J].
Aryal, Nabin ;
Kvist, Torben ;
Ammam, Fariza ;
Pant, Deepak ;
Ottosen, Lars D. M. .
BIORESOURCE TECHNOLOGY, 2018, 264 :359-369
[4]   Pyrolysis of sugarcane bagasse and co-pyrolysis with an Argentinean subbituminous coal [J].
Bonelli, P. R. ;
Buonomo, E. L. ;
Cukierman, A. L. .
ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2007, 29 (08) :731-740
[5]   Energy Conservation in Fermentations of Anaerobic Bacteria [J].
Buckel, Wolfgang .
FRONTIERS IN MICROBIOLOGY, 2021, 12
[6]   Biochar enhanced high-solid mesophilic anaerobic digestion of food waste: Cell viability and methanogenic pathways [J].
Cui, Yuxuan ;
Mao, Feijian ;
Zhang, Jingxin ;
He, Yiliang ;
Tong, Yen Wah ;
Peng, Yinghong .
CHEMOSPHERE, 2021, 272
[7]  
Demeke S., 2013, ETHIOP J APPL SIE TE, V120, P111
[8]  
Deublein D., 2008, BIOGAS WASTE RENEWAB
[9]   Effect of nano-Fe3O4 biochar on anaerobic digestion of chicken manure under high ammonia nitrogen concentration [J].
Di, Lu ;
Zhang, Quanguo ;
Wang, Fang ;
Wang, Hao ;
Liu, Hongkang ;
Yi, Weiming ;
Zhang, Zhiping ;
Zhang, Deli .
JOURNAL OF CLEANER PRODUCTION, 2022, 375
[10]   Biogas production from co-digestion of dairy manure and food waste [J].
El-Mashad, Hamed M. ;
Zhang, Ruihong .
BIORESOURCE TECHNOLOGY, 2010, 101 (11) :4021-4028