A smart correction method for FTIR acquired response spectra of mid-infrared photovoltaic detectors

被引:3
作者
Zhang, Yong-gang [2 ]
Zhou, Hao [4 ]
Yan, Quan [2 ]
Wang, Xiao-zhen [1 ,3 ]
Liu, Chang [4 ]
Chen, Yi-qiao [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Natl Key Lab Mat Integrated Circuits, Shanghai 200050, Peoples R China
[2] Acken Optoelect Ltd, Suzhou 215211, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Wuhan Univ, Sch Phys & Technol, Key Lab Artificial Microand Nanostruct, Minist Educ, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Response spectra; Photovoltaic detector; FTIR instrumentation; Instrument function; Mid-infrared;
D O I
10.1016/j.infrared.2024.105474
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Based on detailed analysis of the frequency characteristics of routinely configured DTGS detector module, a smart correction method for FTIR spectrometer acquired response spectra of photodetectors has been proposed, and validated through different types of mid-infrared photovoltaic detectors operated at different temperatures. Results show that some weaknesses and limitations of previous correction methods are overcome, the instrument function of the FTIR spectrometers could be simply obtained by using DTGS acquired background without further fitting, and the correction process is easier. Furthermore, severe interference effects of the strong absorption features of CO2 and H2O at mid-infrared band could be suppressed dramatically. The applicability and universality of the method have been approved for scan speeds frequently used in experiments. This correction method is applicable from NIR, MIR and extending to FIR of wavelength above 100 mu m for multitudinous photodetectors.
引用
收藏
页数:6
相关论文
共 14 条
[1]  
Fellgett P., 1951, Ph.D. thesis
[2]  
Gong H.M., 2022, InGaAs Photodetectors and Focal Plane Array
[3]   The HITRAN2020 molecular spectroscopic database [J].
Gordon, I. E. ;
Rothman, L. S. ;
Hargreaves, R. J. ;
Hashemi, R. ;
Karlovets, E., V ;
Skinner, F. M. ;
Conway, E. K. ;
Hill, C. ;
Kochanov, R., V ;
Tan, Y. ;
Wcislo, P. ;
Finenko, A. A. ;
Nelson, K. ;
Bernath, P. F. ;
Birk, M. ;
Boudon, V ;
Campargue, A. ;
Chance, K., V ;
Coustenis, A. ;
Drouin, B. J. ;
Flaud, J-M ;
Gamache, R. R. ;
Hodges, J. T. ;
Jacquemart, D. ;
Mlawer, E. J. ;
Nikitin, A., V ;
Perevalov, V., I ;
Rotger, M. ;
Tennyson, J. ;
Toon, G. C. ;
Tran, H. ;
Tyuterev, V. G. ;
Adkins, E. M. ;
Baker, A. ;
Barbe, A. ;
Cane, E. ;
Csaszar, A. G. ;
Dudaryonok, A. ;
Egorov, O. ;
Fleisher, A. J. ;
Fleurbaey, H. ;
Foltynowicz, A. ;
Furtenbacher, T. ;
Harrison, J. J. ;
Hartmann, J-M ;
Horneman, V-M ;
Huang, X. ;
Karman, T. ;
Karns, J. ;
Kassi, S. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2022, 277
[4]  
Henini M., 2002, HDB INFRARED DETECTI
[5]   Type-II superlattice dual-band LWIR imager with M-barrier and Fabry-Perot resonance [J].
Huang, Edward Kwei-wei ;
Haddadi, Abbas ;
Chen, Guanxi ;
Binh-Minh Nguyen ;
Minh-Anh Hoang ;
McClintock, Ryan ;
Stegall, Mark ;
Razeghi, Manijeh .
OPTICS LETTERS, 2011, 36 (13) :2560-2562
[6]  
Jacquinot P., 1960, Reports on Progress in Physics, V23, P267, DOI DOI 10.1088/0034-4885/23/1/305
[7]   Recent trends in 8-14 μm type-II superlattice infrared detectors [J].
Kwan, Dominic ;
Kesaria, Manoj ;
Anyebe, Ezekiel Anyebe ;
Huffaker, Diana .
INFRARED PHYSICS & TECHNOLOGY, 2021, 116
[8]  
thorlabs, About us
[9]  
vigophotonics, About us
[10]   Fourier transform infrared spectroscopy approach for measurements of photoluminescence and electroluminescence in mid-infrared [J].
Zhang, Y. G. ;
Gu, Y. ;
Wang, K. ;
Fang, X. ;
Li, A. Z. ;
Liu, K. H. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (05)