Laser pulse-length dependent ablation and shock generation in silicon at 5 x 1014 W/cm2 intensities

被引:0
作者
Bailly-Grandvaux, M. [1 ]
Hahn, E. N. [1 ]
Joshi, T. R. [2 ]
Werellapatha, K. [1 ]
Cordova, T. [1 ]
Turner, R. E. [1 ]
Garay, J. E. [1 ]
Spielman, R. B. [2 ]
Wicks, J. K. [3 ]
Beg, F. N. [1 ]
机构
[1] Univ Calif San Diego, Ctr Energy Res, La Jolla, CA 92093 USA
[2] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
[3] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21210 USA
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 03期
关键词
ABSORPTION; PHYSICS; FUSION; PLASMA; LIGHT; MODEL; CODE;
D O I
10.1103/PhysRevResearch.6.033053
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The effect of laser pulse duration on energy coupling into a planar silicon target is investigated in experiments at the OMEGA-EP facility by varying the laser pulse length tau -spanning 3 orders of magnitude from 100 ps to 10 ns-while maintaining a constant peak laser intensity, I 0 = 5 x 1014 14 W/cm2. / cm 2 . In theoretical models, the ablation pressure primarily scales for a given material with laser intensity and wavelength, which are all fixed variables here, allowing us to explore the specific role of laser pulse duration. Two-dimensional radiation-hydrodynamics simulations benchmarked with optical probing of the expanding plasma show that the pulse duration is critical for the ablation pressure to reach a steady state. Moreover, the pulse duration impacts shock decay and multiple wave effects, which strongly dictate the evolving shock profile that propagates within the laser-shocked target as ultimately measured by rear-surface diagnostics. The shock velocities inferred from the theoretical model, after considering shock decay, impedance matching, and shock Hugoniot, are found to be in good agreement with velocimetry measurements. However, discrepancies are observed with simulations for the shorter (0.1 ns) and longer (10 ns) pulse durations, which are respectively attributed to unaccounted contributions of kinetic absorption mechanisms and instabilities in simulations.
引用
收藏
页数:8
相关论文
共 50 条
[11]   Extension of the Hugoniot and analytical release model of α-quartz to 0.2-3 TPa [J].
Desjarlais, M. P. ;
Knudson, M. D. ;
Cochrane, K. R. .
JOURNAL OF APPLIED PHYSICS, 2017, 122 (03)
[12]   PARAMETRIC-INSTABILITIES OF ELECTROMAGNETIC-WAVES IN PLASMAS [J].
DRAKE, JF ;
KAW, PK ;
LEE, YC ;
SCHMIDT, G ;
LIU, CS ;
ROSENBLU.MN .
PHYSICS OF FLUIDS, 1974, 17 (04) :778-785
[13]   Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures [J].
Farid, N. ;
Harilal, S. S. ;
Ding, H. ;
Hassanein, A. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (03)
[14]   Laser-produced blast wave and numerical simulation using the FLASH code [J].
Farley, DR ;
Shigemori, K ;
Azechi, H .
LASER AND PARTICLE BEAMS, 2005, 23 (04) :513-519
[15]   Laser-Driven Shock Acceleration of Monoenergetic Ion Beams [J].
Fiuza, F. ;
Stockem, A. ;
Boella, E. ;
Fonseca, R. A. ;
Silva, L. O. ;
Haberberger, D. ;
Tochitsky, S. ;
Gong, C. ;
Mori, W. B. ;
Joshi, C. .
PHYSICAL REVIEW LETTERS, 2012, 109 (21)
[16]   Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations [J].
Gamaly, E. G. ;
Rode, A. V. .
PROGRESS IN QUANTUM ELECTRONICS, 2013, 37 (05) :215-323
[17]   EFFECT OF LASER WAVELENGTH AND PULSE DURATION ON LASER-LIGHT ABSORPTION AND BACK REFLECTION [J].
GARBANLABAUNE, C ;
FABRE, E ;
MAX, CE ;
FABBRO, R ;
AMIRANOFF, F ;
VIRMONT, J ;
WEINFELD, M ;
MICHARD, A .
PHYSICAL REVIEW LETTERS, 1982, 48 (15) :1018-1021
[18]   Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials [J].
Gregor, M. C. ;
Boni, R. ;
Sorce, A. ;
Kendrick, J. ;
Mccoy, C. A. ;
Polsin, D. N. ;
Boehly, T. R. ;
Celliers, P. M. ;
Collins, G. W. ;
Fratanduono, D. E. ;
Eggert, J. H. ;
Millot, M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11)
[19]   Measurements of electron density profiles using an angular filter refractometer [J].
Haberberger, D. ;
Ivancic, S. ;
Hu, S. X. ;
Boni, R. ;
Barczys, M. ;
Craxton, R. S. ;
Froula, D. H. .
PHYSICS OF PLASMAS, 2014, 21 (05)
[20]   Shock-compressed silicon: Hugoniot and sound speed up to 2100 GPa [J].
Henderson, B. J. ;
Marshall, M. C. ;
Boehly, T. R. ;
Paul, R. ;
McCoy, C. A. ;
Hu, S. X. ;
Polsin, D. N. ;
Crandall, L. E. ;
Huff, M. F. ;
Chin, D. A. ;
Ruby, J. J. ;
Gong, X. ;
Fratanduono, D. E. ;
Eggert, J. H. ;
Rygg, J. R. ;
Collins, G. W. .
PHYSICAL REVIEW B, 2021, 103 (09)