The Influence of Reinforced Fibers and Opacifiers on the Effective Thermal Conductivity of Silica Aerogels

被引:4
作者
Huang, Binghuan [1 ]
Li, Jingbei [2 ]
Gong, Liang [1 ]
Dai, Pengcheng [1 ]
Zhu, Chuanyong [1 ]
机构
[1] China Univ Petr East China, Coll New Energy, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Coll Chem & Chem Engn, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
fiber-particle-reinforced silica aerogels; effective thermal conductivity; radiative characteristics; high temperature; HEAT-TRANSFER; COMPOSITES; PREDICTIONS;
D O I
10.3390/gels10050300
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Fiber-particle-reinforced silica aerogels are widely applied in thermal insulation. Knowing their effective thermal conductivity (ETC) and radiative characteristics under high temperatures is necessary to improve their performance. This article first analyzes the radiation characteristics of silica aerogels doped with opacifier particles and reinforced fibers, and then a universal model is established to predict the ETC. Furthermore, the impacts of different parameters of opacifier particles and reinforced fibers on the thermal insulation performance of silica aerogels are investigated. The results indicate that SiC exhibits comparatively strong absorption characteristics, making it a good alternative for opacifiers to improve thermal insulation performance under high temperatures. For the given type and volume fraction of opacifier particles, there exists an optimal diameter and volume fraction to achieve the best insulation performance of silica aerogel under a certain temperature. Considering that SiO2 fibers exhibit a limited extinction capability and higher conductive thermal conductivity under high temperatures, for fiber-particle-reinforced silica aerogels, it is beneficial for their insulation performance to reduce the fiber volume fraction when the required mechanical properties are satisfied.
引用
收藏
页数:15
相关论文
共 28 条
[1]   Coupling model for heat transfer between solid and gas phases in aerogel and experimental investigation [J].
Bi, C. ;
Tang, G. H. ;
Hu, Z. J. ;
Yang, H. L. ;
Li, J. N. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 79 :126-136
[2]   Heat conduction modeling in 3-D ordered structures for prediction of aerogel thermal conductivity [J].
Bi, C. ;
Tang, G. H. ;
Hu, Z. J. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 73 :103-109
[3]  
Brown R.G.W, 1983, ABSORPTION SCATTERIN, DOI [10.1002/9783527618156.refs, DOI 10.1002/9783527618156.REFS]
[4]   Theoretical modeling and experimental validation for the effective thermal conductivity of moist silica aerogel [J].
Chen, Yu ;
Li, Dong ;
Xie, Xiang-Qian ;
Gao, Yang ;
He, Ya-Ling .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 147
[5]   THE EFFECT OF STRUCTURE ON THE CONDUCTIVITY OF A DISPERSION [J].
CHIEW, YC ;
GLANDT, ED .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1983, 94 (01) :90-104
[6]  
Dombrovsky L.A., 2010, Thermal Radiation in Disperse Systems: an Engineering Approach, V3rd
[7]   Numerical predictions of thermal conductivities for the silica aerogel and its composites [J].
Fang, Wen-Zhen ;
Zhang, Hu ;
Chen, Li ;
Tao, Wen-Quan .
APPLIED THERMAL ENGINEERING, 2017, 115 :1277-1286
[8]   Estimating correlations for the effective thermal conductivity of granular materials [J].
Gonzo, EE .
CHEMICAL ENGINEERING JOURNAL, 2002, 90 (03) :299-302
[9]   Advances of thermal conductivity models of nanoscale silica aerogel insulation material [J].
He, Ya-Ling ;
Xie, Tao .
APPLIED THERMAL ENGINEERING, 2015, 81 :28-50
[10]   Experimental investigations on temperature-dependent effective thermal conductivity of nanoporous silica aerogel composite [J].
Liu, Hua ;
Xia, Xinlin ;
Ai, Qing ;
Xie, Xiangqian ;
Sun, Chuang .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2017, 84 :67-77