Maleic Anhydride and (Ethoxy)pentafluorocyclotriphosphazene as Electrolyte Additives for High-Voltage LiCoO2/Si-Graphite Lithium-Ion Batteries

被引:0
|
作者
Ding, Tangqi [1 ]
Wang, Zhipeng [1 ]
Dong, Jiaqi [1 ]
Chen, Gang [2 ]
Zhao, Shuangcheng [3 ]
Wang, Zhihu [3 ]
Fang, Shaohua [1 ]
机构
[1] Shanghai Jiao Tong Univ, Frontiers Sci Ctr Transformat Mol, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[2] Lenovo Beijing Co Ltd, Beijing 100094, Peoples R China
[3] Lenovo Shanghai Informat Technol Co Ltd, Shanghai 201210, Peoples R China
关键词
lithium-ion batteries; high-voltagecathode; si-based anode; electrolyte; anhydrideadditives; flame retardants; LI-ION; ELECTROCHEMICAL PERFORMANCE; TEMPERATURE PERFORMANCE; SUCCINIC ANHYDRIDE; V-CLASS; INTERPHASE; SILICON; CARBONATE; CATHODE; LICOO2;
D O I
10.1021/acsami.4c07377
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Anhydride additives including maleic anhydride and succinic anhydride are initially selected as additives in the commercial electrolytes for high-voltage lithium-ion batteries with a Si-based anode. The introduction of (ethoxy)pentafluorocyclotriphosphazene as a flame retardant realizes the nonflammability of electrolytes, and the conductivity of electrolytes exceeds 10 mS cm(-1) at 25 degrees C. Maleic anhydride and (ethoxy)pentafluorocyclotriphosphazene jointly contribute to the exceptional performances of 4.45 V LiCoO2/Si-graphite pouch cells at 25 degrees C. The capacity retention at 1C of 300 cycles reaches 78%, and the discharge capacity ratio of 6C/1C is approximately 83%. These results suggest that this nonflammable electrolyte has good application prospect. Scanning electron microscopy and X-ray photoelectron spectroscopy measurements are implemented to analyze the interface properties of electrodes.
引用
收藏
页码:38101 / 38110
页数:10
相关论文
共 50 条
  • [21] High Voltage LiCoO2 Cathodes with High Purity Lithium Bis(oxalate) Borate (LiBOB) for Lithium-Ion Batteries
    Subas, Yaprak
    Afyon, Semih
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (08): : 10098 - 10107
  • [22] Effects of different elements based electrolyte additives on the performance and interfacial chemistry of high-voltage LiCoO2/artificial graphite pouch cell
    Zang, Xu-Feng
    Chen, Fang
    Jiang, Yixuan
    Su, Menghang
    Deng, Renbo
    Li, Tong
    JOURNAL OF POWER SOURCES, 2023, 580
  • [23] Weakened Solvation Structure Electrolytes Enable High-Voltage Graphite||LiCoO2 Batteries
    You, Haipeng
    Jiang, Jiaqing
    Chen, Long
    Li, Chunzhong
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (15): : 6696 - 6703
  • [24] Design of a novel electrolyte additive for high voltage LiCoO2 cathode lithium-ion batteries: Lithium 4-benzonitrile trimethyl borate
    Sun, Zhaoyu
    Zhou, Hebing
    Luo, Xuehuan
    Che, Yanxia
    Li, Weishan
    Xu, Mengqing
    JOURNAL OF POWER SOURCES, 2021, 503
  • [25] Synergetic Effect of Electrolyte Coadditives for a High-Voltage LiCoO2 Cathode
    Wen, Xinyang
    Chen, Min
    Zhou, Xianggui
    Chen, Shuai
    Huang, Haonan
    Chen, Jiakun
    Ruan, Digen
    Xiang, Wenjin
    Zhang, Gaige
    Li, Weishan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (01) : 282 - 295
  • [26] High-voltage LiCoO2 cathodes for high-energy-density lithium-ion battery
    Jing-Chao Zhang
    Zhe-Dong Liu
    Cui-Hua Zeng
    Jia-Wei Luo
    Yi-Da Deng
    Xiao-Ya Cui
    Ya-Nan Chen
    Rare Metals, 2022, 41 : 3946 - 3956
  • [27] Lithium Difluorophosphate As a Promising Electrolyte Lithium Additive for High-Voltage Lithium-Ion Batteries
    Wang, Chengyun
    Yu, Le
    Fan, Weizhen
    Liu, Jiangwen
    Ouyang, Liuzhang
    Yang, Lichun
    Zhu, Min
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (06): : 2647 - 2656
  • [28] Raman diagnostics of LiCoO2 electrodes for lithium-ion batteries
    Gross, Toni
    Hess, Christian
    JOURNAL OF POWER SOURCES, 2014, 256 : 220 - 225
  • [29] Advances of LiCoO2 in Cathode of Aqueous Lithium-Ion Batteries
    Ma, Hailing
    Wang, Fei
    Shen, Minghai
    Tong, Yao
    Wang, Hongxu
    Hu, Hanlin
    SMALL METHODS, 2024, 8 (06)
  • [30] One-Step Integrated Comodification to Improve the Electrochemical Performances of High-Voltage LiCoO2 for Lithium-Ion Batteries
    Gu, Run
    Qlan, Ruicheng
    Lyu, Yingchun
    Guo, Bingkun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (25): : 9346 - 9355