Advances in conducting polymer-based thermoelectric materials and devices

被引:77
作者
Cao, Tianyi [1 ]
Shi, Xiao-Lei [2 ]
Zou, Jin [1 ,3 ]
Chen, Zhi-Gang [1 ,2 ]
机构
[1] Univ Queensland, Sch Mech & Min Engn, Brisbane, Qld 4072, Australia
[2] Univ Southern Queensland, Ctr Future Mat, Springfield Central, Qld 4300, Australia
[3] Univ Queensland, Ctr Microscopy & Microanal, Brisbane, Qld 4072, Australia
来源
MICROSTRUCTURES | 2021年 / 1卷 / 01期
基金
澳大利亚研究理事会;
关键词
Thermoelectric; conducting polymer; synthesis; performance; device; PEDOTPSS THIN-FILMS; THERMAL-CONDUCTIVITY; POWER FACTOR; ELECTRICAL-CONDUCTIVITY; SEEBECK COEFFICIENT; GRAPHENE OXIDE; CHARGE-TRANSPORT; COMPOSITE FILMS; DOPED P3HT; BODY HEAT;
D O I
10.20517/microstructures.2021.06
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Conducting polymer-based thermoelectric materials are considered the most promising candidates for applying to wearable thermoelectric devices because of their high electrical conductivities, flexibility, stability, and low-toxicity features. Therefore, a timely review is needed to comprehensively overview their most recent progress in the last few years, considering the rapid development of thermoelectric conducting polymers. In this work, we carefully summarize recent advances in thermoelectric conducting polymers from aspects of their mechanisms, synthesis, micro/nanostructures, mechanical/thermoelectric properties, and related functional devices. A few state-of-theart thermoelectric conducting polymers, including poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate), poly(3-hexylthiophene), polyaniline, and polypyrrole, are highlighted in detail. In the end, we point out the challenges, controversies, and outlooks of conducting polymers for future thermoelectric applications.
引用
收藏
页数:33
相关论文
共 245 条
[1]   A Wearable All-Fabric Thermoelectric Generator [J].
Allison, Linden K. ;
Andrew, Trisha L. .
ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (05)
[2]   Precise measurement of absolute Seebeck coefficient from Thomson effect using ac-dc technique [J].
Amagai, Y. ;
Shimazaki, T. ;
Okawa, K. ;
Fujiki, H. ;
Kawae, T. ;
Kaneko, N. -H. .
AIP ADVANCES, 2019, 9 (06)
[3]   Enhancement of Thermoelectric Properties of PEDOT:PSS and Tellurium-PEDOT:PSS Hybrid Composites by Simple Chemical Treatment [J].
Bae, Eun Jin ;
Kang, Young Hun ;
Jang, Kwang-Suk ;
Cho, Song Yun .
SCIENTIFIC REPORTS, 2016, 6
[4]   OCVD polymerization of PEDOT: effect of pre-treatment steps on PEDOT-coated conductive fibers and a morphological study of PEDOT distribution on textile yarns [J].
Bashir, Tariq ;
Ali, Majid ;
Cho, Sung-Woo ;
Persson, Nils-Krister ;
Skrifvars, Mikael .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2013, 24 (02) :210-219
[5]   Scalable free-standing polypyrrole films for wrist-band type flexible thermoelectric power generator [J].
Bharti, Meetu ;
Jha, P. ;
Singh, Ajay ;
Chauhan, A. K. ;
Misra, Shantanu ;
Yamazoe, Masato ;
Debnath, A. K. ;
Marumoto, Kazuhiro ;
Muthe, K. P. ;
Aswal, D. K. .
ENERGY, 2019, 176 :853-860
[6]   Flexo-green Polypyrrole - Silver nanocomposite films for thermoelectric power generation [J].
Bharti, Meetu ;
Singh, Ajay ;
Samanta, Soumen ;
Debnath, A. K. ;
Aswal, D. K. ;
Muthe, K. P. ;
Gadkari, S. C. .
ENERGY CONVERSION AND MANAGEMENT, 2017, 144 :143-152
[7]   Full-spectrum responsive photocatalytic activity via non-noble metal Bi decorated mulberry-like BiVO4 [J].
Bi, Yaxin ;
Yang, Yanling ;
Shi, Xiao-Lei ;
Feng, Lei ;
Hou, Xiaojiang ;
Ye, Xiaohui ;
Zhang, Li ;
Suo, Guoquan ;
Lu, Siyu ;
Chen, Zhi-Gang .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 83 :102-112
[8]   RETRACTED: Towards polymer-based organic thermoelectric generators (Retracted Article) [J].
Bubnova, Olga ;
Crispin, Xavier .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) :9345-9362
[9]  
Chatterjee MJ, 2018, MATER TODAY-PROC, V5, P9743
[10]   Composite of single walled carbon nanotube and sulfosalicylic acid doped polyaniline: a thermoelectric material [J].
Chatterjee, Mukulika Jana ;
Banerjee, Dipali ;
Chatterjee, Krishanu .
MATERIALS RESEARCH EXPRESS, 2016, 3 (08)