Actions of finite group schemes on curves

被引:0
作者
Brion, Michel [1 ]
机构
[1] Univ Grenoble Alpes, Inst Fourier, 100 Rue Math, F-38610 Gieres, France
关键词
Finite group scheme; curve; surface; AUTOMORPHISMS; SURFACES; THEOREMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Every action of a finite group scheme G on a variety admits a projective equivariant model, but not necessarily a normal one. As a remedy, we introduce and explore the notion of Gnormalization. In particular, every curve equipped with a G -action has a unique projective G -normal model, characterized by the invertibility of ideal sheaves of all orbits. Also, G -normal curves occur naturally in some questions on surfaces in positive characteristics.
引用
收藏
页码:1065 / 1095
页数:31
相关论文
共 24 条
[1]   Non-normal abelian covers [J].
Alexeev, Valery ;
Pardini, Rita .
COMPOSITIO MATHEMATICA, 2012, 148 (04) :1051-1084
[2]  
[Anonymous], 1970, Sib. Math. J.
[3]   ENRIQUES CLASSIFICATION OF SURFACES IN CHAR-P .3. [J].
BOMBIERI, E ;
MUMFORD, D .
INVENTIONES MATHEMATICAE, 1976, 35 :197-232
[4]  
Bombieri Enrico., 1977, COMPLEX ANAL ALGEBRA, P23
[5]  
Brion M, 2017, Transactions of the Moscow Mathematical Society, V78, P85, DOI [10.1090/mosc/263, DOI 10.1090/MOSC/263]
[6]   On models of algebraic group actions [J].
Brion, Michel .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2022, 132 (02)
[7]   Some structure theorems for algebraic groups [J].
Brion, Michel .
ALGEBRAIC GROUPS: STRUCTURE AND ACTIONS, 2017, 94 :53-126
[8]  
Demazure Michel., 1970, GROUPES ALG BRIQUES
[9]  
Demazure Michel., 1970, ANN SCI COLE NORM SU, V3, P507, DOI DOI 10.24033/ASENS.1201
[10]   Automorphisms of cubic surfaces in positive characteristic [J].
Dolgachev, I ;
Duncan, A. .
IZVESTIYA MATHEMATICS, 2019, 83 (03) :424-500