Mobile mid-infrared differential absorption lidar for methane monitoring in the atmosphere: Calibration and first in situ tests

被引:5
作者
Yakovlev, S. V. [1 ]
Romanovskii, O. A. [1 ]
Sadovnikov, S. A. [1 ]
Tuzhilkin, D. A. [1 ]
Nevzorov, A. A. [1 ]
Kharchenko, O. V. [1 ]
Kravtsova, N. S. [1 ]
Zuev, V. E. [1 ]
机构
[1] Russian Acad Sci, VE Zuev Inst Atmospher Opt, Siberian Branch, Acad Zuev Sq 1, Tomsk 634055, Russia
来源
RESULTS IN OPTICS | 2022年 / 8卷
基金
俄罗斯基础研究基金会;
关键词
Lidar; Infrared region; Differential absorption; Atmosphere; Methane; SYSTEM; CO2; PERFORMANCE; H2O; NM;
D O I
10.1016/j.rio.2022.100233
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A mobile infrared (IR) differential absorption lidar designed for the study of methane in the atmosphere is described. A mobile IR radiation source for the differential absorption lidar was calibrated in the informative range for methane sounding near -3400 nm. Informative methane sounding wavelengths for mid-latitude summer conditions are 3428.428 nm (on-line) and 3431.708 nm (off-line), respectively. The maximum output energy in a pulse of the mobile lidar is 4.3 mJ (for on-line wavelength) and 2.5 mJ (for off-line wavelength). The lidar was in situ tested in recording the atmospheric response at calibrated sounding wavelengths and in retrieving background methane concentrations of -2.0 ppm along surface atmospheric sounding paths. The test results at the Basic Experimental Complex and the Fonovaya Observatory of IAO SB RAS are presented.
引用
收藏
页数:8
相关论文
共 43 条
[1]   Measurement of absorption spectra for atmospheric methane by a lidar system with tunable emission wavelength in the range 1.41-4.24 μm [J].
Airapetyan, V. S. .
JOURNAL OF APPLIED SPECTROSCOPY, 2009, 76 (02) :268-272
[2]   CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions [J].
Amediek, Axel ;
Ehret, Gerhard ;
Fix, Andreas ;
Wirth, Martin ;
Buedenbender, Christian ;
Quatrevalet, Mathieu ;
Kiemle, Christoph ;
Gerbig, Christoph .
APPLIED OPTICS, 2017, 56 (18) :5182-5197
[3]   Laser detection of explosives based on differential absorption and scattering [J].
Ayrapetyan, V. S. ;
Fomin, P. A. .
OPTICS AND LASER TECHNOLOGY, 2018, 106 :202-208
[4]  
Barrientos-Barria J., 2013, Optica Publishing Group paper CD_5_ 4.
[5]   Wide Area Methane Emissions Mapping with Airborne IPDA LiDAR [J].
Bartholomew, Jarett ;
Lyman, Philip ;
Weimer, Carl ;
Tandy, William .
LIDAR REMOTE SENSING FOR ENVIRONMENTAL MONITORING 2017, 2017, 10406
[6]   Atmospheric boundary layer CO2 remote sensing with a direct detection LIDAR instrument based on a widely tunable optical parametric source [J].
Cadiou, Erwan ;
Mammez, Dominique ;
Dherbecourt, Jean-Baptiste ;
Gorju, Guillaume ;
Pelon, Jacques ;
Melkonian, Jean-Michel ;
Godard, Antoine ;
Raybaut, Myriam .
OPTICS LETTERS, 2017, 42 (20) :4044-4047
[7]   Performance assessment of a coherent DIAL-Doppler fiber lidar at 1645 nm for remote sensing of methane and wind [J].
Cezard, Nicolas ;
Le Mehaute, Simon ;
Le Gouet, Julien ;
Valla, Matthieu ;
Goular, Didier ;
Fleury, Didier ;
Planchat, Christophe ;
Dolfi-Bouteyre, Agnes .
OPTICS EXPRESS, 2020, 28 (15) :22345-22357
[8]  
Collins R.T. H., 1976, Topics in Applied Physics, V14, P71, DOI [10.1007/3-540-07743-X18, DOI 10.1007/3-540-07743-X18]
[9]   Optical Parametric Technology for Methane Measurements [J].
Dawsey, Martha ;
Numata, Kenji ;
Wu, Stewart ;
Riris, Haris .
LIDAR REMOTE SENSING FOR ENVIRONMENTAL MONITORING XV, 2015, 9612
[10]  
DeAntonio M., 2013, US patent application, Patent No. [14/101,143, 14101143]