KnockoffHybrid: A knockoff framework for hybrid analysis of trio and population designs in genome-wide association studies

被引:1
作者
Yang, Yi [1 ,2 ]
Wang, Qi [2 ]
Wang, Chen [3 ]
Buxbaum, Joseph [4 ,5 ,6 ]
Ionita-Laza, Iuliana [3 ,7 ]
机构
[1] City Univ Hong Kong, Dept Biostat, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China
[3] Columbia Univ, Dept Biostat, New York, NY 10032 USA
[4] Icahn Sch Med Mt Sinai, Dept Psychiat, New York, NY 10029 USA
[5] Icahn Sch Med Mt Sinai, Dept Neurosci, New York, NY 10029 USA
[6] Icahn Sch Med Mt Sinai, Dept Genet Genom Sci, New York, NY 10029 USA
[7] Lund Univ, Dept Stat, Lund, Sweden
关键词
FAMILY-BASED DESIGNS; GENETIC ASSOCIATION; COMMON ALLELES; LARGE-SCALE; AUTISM; SPECTRUM; STRATIFICATION; DISEQUILIBRIUM; IDENTIFICATION; INDIVIDUALS;
D O I
10.1016/j.ajhg.2024.05.003
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Both trio and population designs are popular study designs for identifying risk genetic variants in genome-wide association studies (GWASs). The trio design, as a family-based design, is robust to confounding due to population structure, whereas the population design is often more powerful due to larger sample sizes. Here, we propose KnockoffHybrid, a knockoff-based statistical method for hybrid analysis of both the trio and population designs. KnockoffHybrid provides a unified framework that brings together the advantages of both designs and produces powerful hybrid analysis while controlling the false discovery rate (FDR) in the presence of linkage disequilibrium and population structure. Furthermore, KnockoffHybrid has the flexibility to leverage different types of summary statistics for hybrid analyses, including expression quantitative trait loci (eQTL) and GWAS summary statistics. We demonstrate in simulations that KnockoffHybrid offers power gains over non-hybrid methods for the trio and population designs with the same number of cases while controlling the FDR with complex correlation among variants and population structure among subjects. In hybrid analyses of three trio cohorts for autism spectrum disorders (ASDs) from the Autism Speaks MSSNG, Autism Sequencing Consortium, and Autism Genome Project with GWAS summary statistics from the iPSYCH project and eQTL summary statistics from the MetaBrain project, KnockoffHybrid outperforms conventional methods by replicating several known risk genes for ASDs and identifying additional associations with variants in other genes, including the PRAME family genes involved in axon guidance and which may act as common targets for human speech/language evolution and related disorders.
引用
收藏
页码:1448 / 1461
页数:15
相关论文
共 72 条
[11]   Efficient Variant Set Mixed Model Association Tests for Continuous and Binary Traits in Large-Scale Whole-Genome Sequencing Studies [J].
Chen, Han ;
Huffman, Jennifer E. ;
Brody, Jennifer A. ;
Wang, Chaolong ;
Lee, Seunggeun ;
Li, Zilin ;
Gogarten, Stephanie M. ;
Sofer, Tamar ;
Bielak, Lawrence F. ;
Bis, Joshua C. ;
Blangero, John ;
Bowler, Russell P. ;
Cade, Brian E. ;
Cho, Michael H. ;
Correa, Adolfo ;
Curran, Joanne E. ;
de Vries, Paul S. ;
Glahn, David C. ;
Guo, Xiuqing ;
Johnson, Andrew D. ;
Kardia, Sharon ;
Kooperberg, Charles ;
Lewis, Joshua P. ;
Liu, Xiaoming ;
Mathias, Rasika A. ;
Mitchell, Braxton D. ;
O'Connell, Jeffrey R. ;
Peyser, Patricia A. ;
Post, Wendy S. ;
Reiner, Alex P. ;
Rich, Stephen S. ;
Rotter, Jerome I. ;
Silverman, Edwin K. ;
Smith, Jennifer A. ;
Vasan, Ramachandran S. ;
Wilson, James G. ;
Yanek, Lisa R. ;
Redline, Susan ;
Smith, Nicholas L. ;
Boerwinkle, Eric ;
Borecki, Ingrid B. ;
Cupples, L. Adrienne ;
Laurie, Cathy C. ;
Morrison, Alanna C. ;
Rice, Kenneth M. ;
Lin, Xihong .
AMERICAN JOURNAL OF HUMAN GENETICS, 2019, 104 (02) :260-274
[12]   Sequence Kernel Association Test for Quantitative Traits in Family Samples [J].
Chen, Han ;
Meigs, James B. ;
Dupuis, Josee .
GENETIC EPIDEMIOLOGY, 2013, 37 (02) :196-204
[13]   Simple association analysis combining data from trios/sibships and unrelated controls [J].
Chen, Yi-Hau ;
Lin, Hui-Wen .
GENETIC EPIDEMIOLOGY, 2008, 32 (06) :520-527
[14]   OTTERS: a powerful TWAS framework leveraging summary-level reference data [J].
Dai, Qile ;
Zhou, Geyu ;
Zhao, Hongyu ;
Vosa, Urmo ;
Franke, Lude ;
Battle, Alexis ;
Teumer, Alexander ;
Lehtimaki, Terho ;
Raitakari, Olli T. ;
Esko, Tonu ;
Epstein, Michael P. ;
Yang, Jingjing .
NATURE COMMUNICATIONS, 2023, 14 (01)
[15]   Rare Variant Analysis for Family-Based Design [J].
De, Gourab ;
Yip, Wai-Ki ;
Ionita-Laza, Iuliana ;
Laird, Nan .
PLOS ONE, 2013, 8 (01)
[16]   Brain expression quantitative trait locus and network analyses reveal downstream effects and putative drivers for brain-related diseases [J].
de Klein, Niek ;
Tsai, Ellen A. ;
Vochteloo, Martijn ;
Baird, Denis ;
Huang, Yunfeng ;
Chen, Chia-Yen ;
van Dam, Sipko ;
Oelen, Roy ;
Deelen, Patrick ;
Bakker, Olivier B. ;
El Garwany, Omar ;
Ouyang, Zhengyu ;
Marshall, Eric E. ;
Zavodszky, Maria I. ;
van Rheenen, Wouter ;
Bakker, Mark K. ;
Veldink, Jan ;
Gaunt, Tom R. ;
Runz, Heiko ;
Franke, Lude ;
Westra, Harm-Jan .
NATURE GENETICS, 2023, 55 (03) :377-+
[17]   Synaptic, transcriptional and chromatin genes disrupted in autism [J].
De Rubeis, Silvia ;
He, Xin ;
Goldberg, Arthur P. ;
Poultney, Christopher S. ;
Samocha, Kaitlin ;
Cicek, A. Ercument ;
Kou, Yan ;
Liu, Li ;
Fromer, Menachem ;
Walker, Susan ;
Singh, Tarjinder ;
Klei, Lambertus ;
Kosmicki, Jack ;
Fu, Shih-Chen ;
Aleksic, Branko ;
Biscaldi, Monica ;
Bolton, Patrick F. ;
Brownfeld, Jessica M. ;
Cai, Jinlu ;
Campbell, Nicholas G. ;
Carracedo, Angel ;
Chahrour, Maria H. ;
Chiocchetti, Andreas G. ;
Coon, Hilary ;
Crawford, Emily L. ;
Crooks, Lucy ;
Curran, Sarah R. ;
Dawson, Geraldine ;
Duketis, Eftichia ;
Fernandez, Bridget A. ;
Gallagher, Louise ;
Geller, Evan ;
Guter, Stephen J. ;
Hill, R. Sean ;
Ionita-Laza, Iuliana ;
Gonzalez, Patricia Jimenez ;
Kilpinen, Helena ;
Klauck, Sabine M. ;
Kolevzon, Alexander ;
Lee, Irene ;
Lei, Jing ;
Lehtimaeki, Terho ;
Lin, Chiao-Feng ;
Ma'ayan, Avi ;
Marshall, Christian R. ;
McInnes, Alison L. ;
Neale, Benjamin ;
Owen, Michael J. ;
Ozaki, Norio ;
Parellada, Mara .
NATURE, 2014, 515 (7526) :209-+
[18]  
Delaneau O, 2012, NAT METHODS, V9, P179, DOI [10.1038/nmeth.1785, 10.1038/NMETH.1785]
[19]   A Fast and Accurate Algorithm to Test for Binary Phenotypes and Its Application to PheWAS [J].
Dey, Rounak ;
Schmidt, Ellen M. ;
Abecasis, Goncalo R. ;
Lee, Seunggeun .
AMERICAN JOURNAL OF HUMAN GENETICS, 2017, 101 (01) :37-49
[20]   Aberrant Striatal Functional Connectivity in Children with Autism [J].
Di Martino, Adriana ;
Kelly, Clare ;
Grzadzinski, Rebecca ;
Zuo, Xi-Nian ;
Mennes, Maarten ;
Angeles Mairena, Maria ;
Lord, Catherine ;
Castellanos, F. Xavier ;
Milham, Michael P. .
BIOLOGICAL PSYCHIATRY, 2011, 69 (09) :847-856