A Finite Volume Method for a Convection-Diffusion Equation Involving a Joule Term

被引:0
作者
Calgaro, Caterina [1 ]
Creuse, Emmanuel [2 ]
机构
[1] Univ Lille, INRIA, Lab Paul Painleve, CNRS,UMR 8524, F-59000 Lille, France
[2] Univ Poly Hauts de France, EA 4015, LAMAV, FR CNRS 2956, F-59313 Valenciennes, France
来源
FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9 | 2020年 / 323卷
关键词
Finite volume scheme; Joule term; Maximum principle; ELEMENT;
D O I
10.1007/978-3-030-43651-3_37
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to a Finite Volume method to approximate the solution of a convection-diffusion equation involving a Joule term. We propose a way to discretize this so-called "Joule effect" term in a consistent way with the non linear diffusion one, in order to ensure some maximum principle properties on the solution. We then investigate the numerical behavior of the scheme on two original benchmarks.
引用
收藏
页码:405 / 413
页数:9
相关论文
共 10 条
[1]   Discretization of coupled heat and electrical diffusion problems by finite-element and finite-volume methods [J].
Bradji, Abdallah ;
Herbin, Raphaele .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (03) :469-495
[2]   A combined finite volume - finite element scheme for a low-Mach system involving a Joule term [J].
Calgaro, Caterina ;
Colin, Claire ;
Creuse, Emmanuel .
AIMS MATHEMATICS, 2020, 5 (01) :311-331
[3]   Approximation by an iterative method of a low-Mach model with temperature dependent viscosity [J].
Calgaro, Caterina ;
Colin, Claire ;
Creuse, Emmanuel ;
Zahrouni, Ezzeddine .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (01) :250-271
[4]   Discrete duality finite volume schemes for two-dimensional drift-diffusion and energy-tran sport models [J].
Chainais-Hillairet, C. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 59 (03) :239-257
[5]   Numerical solutions of Euler-Poisson systems for potential flows [J].
Chainais-Hillairet, Claire ;
Peng, Yue-Jue ;
Violet, Ingrid .
APPLIED NUMERICAL MATHEMATICS, 2009, 59 (02) :301-315
[6]  
Colin C., 2019, Ph.D. thesis
[7]   A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension [J].
Eymard, R ;
Gallouët, T ;
Herbin, R .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (02) :326-353
[8]  
Eymard R, 2000, HDBK NUM AN, V7, P713
[9]   ON THE STRONG SOLUTION OF THE GHOST EFFECT SYSTEM [J].
Huang, Feimin ;
Tan, Wenke .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (05) :3496-3526
[10]   Local Well-Posedness of a Dispersive Navier-Stokes System [J].
Levermore, C. David ;
Sun, Weiran .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (02) :517-576