High-quality Surface Reconstruction using Gaussian Surfels

被引:23
作者
Dai, Pinxuan [1 ]
Xu, Jiamin [2 ]
Xie, Wenxiang [1 ]
Liu, Xinguo [1 ]
Wang, Huamin [3 ]
Xu, Weiwei [1 ]
机构
[1] Zhejiang Univ, State Key Lab CAD&CG, Hangzhou, Peoples R China
[2] Hangzhou Dianzi Univ, Hangzhou, Peoples R China
[3] Style3D Res, Atlanta, GA USA
来源
PROCEEDINGS OF SIGGRAPH 2024 CONFERENCE PAPERS | 2024年
关键词
3D Surface Reconstruction; Gaussian Surfels; Depth-normal Consistency; MULTIVIEW; STEREO;
D O I
10.1145/3641519.3657441
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel point-based representation, Gaussian surfels, to combine the advantages of the flexible optimization procedure in 3D Gaussian points and the surface alignment property of surfels. This is achieved by directly setting the z-scale of 3D Gaussian points to 0, effectively flattening the original 3D ellipsoid into a 2D ellipse. Such a design provides clear guidance to the optimizer. By treating the local z-axis as the normal direction, it greatly improves optimization stability and surface alignment. While the derivatives to the local z-axis computed from the covariance matrix are zero in this setting, we design a self-supervised normal-depth consistency loss to remedy this issue. Monocular normal priors and foreground masks are incorporated to enhance the quality of the reconstruction, mitigating issues related to highlights and background. We propose a volumetric cutting method to aggregate the information of Gaussian surfels so as to remove erroneous points in depth maps generated by alpha blending. Finally, we apply screened Poisson reconstruction method to the fused depth maps to extract the surface mesh. Experimental results show that our method demonstrates superior performance in surface reconstruction compared to state-of-the-art neural volume rendering and point-based rendering methods.
引用
收藏
页数:11
相关论文
共 56 条
[1]   Neural Point-Based Graphics [J].
Aliev, Kara-Ali ;
Sevastopolsky, Artem ;
Kolos, Maria ;
Ulyanov, Dmitry ;
Lempitsky, Victor .
COMPUTER VISION - ECCV 2020, PT XXII, 2020, 12367 :696-712
[2]  
Averbuch-Elor Hadar, 2022, ACM SIGGRAPH 2022 C, P1
[3]  
Botsch M., Proceedings of the Second Eurographics / IEEE VGTC Conference on Point-Based Graphics, ser. SPBG'05. Aire-la-Ville, Switzerland, Switzerland: Eurographics Association, P17, DOI [DOI 10.1109/PBG.2005.194059, 10.1109/PBG.2005.194059]
[4]   Efficient Geometry-aware 3D Generative Adversarial Networks [J].
Chan, Eric R. ;
Lin, Connor Z. ;
Chan, Matthew A. ;
Nagano, Koki ;
Pan, Boxiao ;
de Mello, Shalini ;
Gallo, Orazio ;
Guibas, Leonidas ;
Tremblay, Jonathan ;
Khamis, Sameh ;
Karras, Tero ;
Wetzstein, Gordon .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :16102-16112
[5]   TensoRF: Tensorial Radiance Fields [J].
Chen, Anpei ;
Xu, Zexiang ;
Geiger, Andreas ;
Yu, Jingyi ;
Su, Hao .
COMPUTER VISION - ECCV 2022, PT XXXII, 2022, 13692 :333-350
[6]  
Chen HL, 2025, Arxiv, DOI arXiv:2312.00846
[7]   Improving neural implicit surfaces geometry with patch warping [J].
Darmon, Francois ;
Bascle, Benedicte ;
Devaux, Jean-Clement ;
Monasse, Pascal ;
Aubry, Mathieu .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :6250-6259
[8]   Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision Datasets from 3D Scans [J].
Eftekhar, Ainaz ;
Sax, Alexander ;
Malik, Jitendra ;
Zamir, Amir .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :10766-10776
[9]   Plenoxels: Radiance Fields without Neural Networks [J].
Fridovich-Keil, Sara ;
Yu, Alex ;
Tancik, Matthew ;
Chen, Qinhong ;
Recht, Benjamin ;
Kanazawa, Angjoo .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :5491-5500
[10]  
Fu Qiancheng, 2022, Advances in Neural Information Processing Systems