Generalizations of 2-absorbing Primal Ideals in Commutative Rings

被引:0
作者
Jaber, Ameer [1 ]
Shaqbou'a, Rania [1 ]
机构
[1] Hashemite Univ, Fac Sci, Dept Math, Zarqa, Jordan
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2024年 / 42卷
关键词
phi-2-absorbing ideal; phi-primal ideal;
D O I
10.5269/bspm.62383
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with unity (1 =6 0). A proper ideal of R is an ideal I of R such that I =6 R . Let phi : a ( R ) a ( R ) U {O} be any function, where a ( R ) denotes the set of all proper ideals of R . In this paper we introduce the concept of a phi -2-absorbing primal ideal which is a generalization of a phi -primal ideal. An element a E R is defined to be phi -2-absorbing prime to I if for any r, s, t E R with rsta E I \ phi ( I ), then rs E I or rt E I or st E I . An element a E R is not phi -2-absorbing prime to I if there exist r, s, t E R , with rsta E I \ phi ( I ), such that rs, rt, st E R \ I . We denote by nu d, ( I ) the set of all elements in R that are not phi -2-absorbing prime to I . We define a proper ideal I of R to be a phi -2-absorbing primal if the set nu d, ( I ) U phi ( I ) forms an ideal of R . Many results concerning phi -2-absorbing primal ideals and examples of phi -2-absorbing primal ideals are given.
引用
收藏
页码:13 / 13
页数:1
相关论文
共 10 条
  • [1] Generalizations of prime ideals
    Anderson, D. D.
    Bataineh, Malik
    [J]. COMMUNICATIONS IN ALGEBRA, 2008, 36 (02) : 686 - 696
  • [2] ON n-ABSORBING IDEALS OF COMMUTATIVE RINGS
    Anderson, David F.
    Badawi, Ayman
    [J]. COMMUNICATIONS IN ALGEBRA, 2011, 39 (05) : 1646 - 1672
  • [3] On 2-absorbing ideals of commutative rings
    Badawi, Ayman
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 75 (03) : 417 - 429
  • [4] Generalizations of 2-absorbing primary ideals of commutative rings
    Badawi, Ayman
    Tekir, Unsal
    Aslankarayigit Ugurlu, Emel
    Ulucak, Gulsen
    Yetkin Celikel, Ece
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (03) : 703 - 717
  • [5] ON 2-ABSORBING PRIMARY IDEALS IN COMMUTATIVE RINGS
    Badawi, Ayman
    Tekir, Unsal
    Yetkin, Ece
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (04) : 1163 - 1173
  • [6] Darani AY, 2012, MAT VESTN, V64, P25
  • [7] FUCHS L, 1950, P AM MATH SOC, V1, P1
  • [8] Jaber A., 2018, Far East Journal of Mathematical Sciences, V103, P53
  • [9] Jaber A, 2022, ITAL J PURE APPL MAT, P609
  • [10] Payrovi S., 2012, Int. Math. Forum, V7, P265