Lithium Niobate Waveguide Mode Converter Based on V-Shaped Silicon

被引:3
作者
Zhang Cheng [1 ]
Xu Yin [1 ,2 ]
Dong Yue [1 ,2 ]
Zhang Bo [1 ,2 ]
Ni Yi [1 ,2 ]
机构
[1] Jiangnan Univ, Sch IoT Engn, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Inst Adv Technol, Wuxi 214122, Jiangsu, Peoples R China
关键词
integrated optics; integrated optics devices; waveguides; lithium niobate; micro-optical devices; METASURFACE; EXCHANGE; PHASE;
D O I
10.3788/LOP230829
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mode converter, achieving the mode conversion task from fundamental mode to higher-order mode, is a key component for the on- chip multimode transmission and mode division multiplexing transmission. Here, we propose an array of V- shaped silicon mode converter based on the thin film lithium niobate (TFLN) waveguide. The mode conversion structure is consisted of an array of V- shaped silicon, where it is deposited atop the TFLN waveguide. Based on such structure, we conduct detailed structural analyses and optimizations, where the required conversion length is only 11 mu m and the central wavelength is 1550 nm for the mode conversion from input TE0 mode to output TE1 mode. The mode conversion efficiency, crosstalk, and insertion loss are 96. 8%, - 28. 6 dB, and 0. 78 dB, respectively. We further extend the device structure and obtain the mode conversion from input TE0 mode to output TE2 mode in the same length, where the mode conversion efficiency, crosstalk, and insertion loss are 91. 3%, -14. 3 dB, and 1 dB, respectively. If we further extend the device structure, other higher- order modes can also be obtained. We believe the proposed device structure and scheme could benefit the multimode transmission for the TFLN waveguide and boost the development of photonic integrated components and circuits based on the TFLN platform.
引用
收藏
页数:8
相关论文
共 28 条
[1]   Ultrabroadband, compact, polarization independent and efficient metasurface-based power splitter on lithium niobate waveguides [J].
Alquliah, Amged ;
Elkabbash, Mohamed ;
Zhang, Jihua ;
Cheng, JinLuo ;
Guo, Chunlei .
OPTICS EXPRESS, 2021, 29 (06) :8160-8170
[2]   Silicon Nanophotonic Integrated Devices for On-Chip Multiplexing and Switching [J].
Dai, Daoxin .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2017, 35 (04) :572-587
[3]   High-bit rate ultra-compact light routing with mode-selective on-chip nanoantennas [J].
Guo, Rui ;
Decker, Manuel ;
Setzpfandt, Frank ;
Gai, Xin ;
Choi, Duk-Yong ;
Kiselev, Roman ;
Chipouline, Arkadi ;
Staude, Isabelle ;
Pertsch, Thomas ;
Neshev, Dragomir N. ;
Kivshar, Yuri S. .
SCIENCE ADVANCES, 2017, 3 (07)
[4]   Mode and Polarization-Division Multiplexing Based on Silicon Nitride Loaded Lithium Niobate on Insulator Platform [J].
Han, Xu ;
Jiang, Yongheng ;
Frigg, Andreas ;
Xiao, Huifu ;
Zhang, Pu ;
Nguyen, Thach Giang ;
Boes, Andreas ;
Yang, Jianhong ;
Ren, Guanghui ;
Su, Yikai ;
Mitchell, Arnan ;
Tian, Yonghui .
LASER & PHOTONICS REVIEWS, 2022, 16 (01)
[5]   Reconfigurable On-Chip Mode Exchange for Mode-Division Multiplexing Optical Networks [J].
Han, Xu ;
Xiao, Huifu ;
Liu, Zilong ;
Zhao, Ting ;
Jia, Hao ;
Yang, Jianhong ;
Eggleton, Benjamin J. ;
Tian, Yonghui .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (03) :1008-1013
[6]   Integrated TM-through/TE-converted polarization beam splitter based on z-cut lithium niobate-on-insulator platform [J].
Jiang, Ruizhao ;
Xu, Yin ;
Dong, Yue ;
Zhang, Bo ;
Ni, Yi .
OPTIK, 2022, 255
[7]   Mode hybridization analysis in thin film lithium niobate strip multimode waveguides [J].
Kaushalram, Archana ;
Hegde, Gopalkrishna ;
Talabattula, Srinivas .
SCIENTIFIC REPORTS, 2020, 10 (01)
[8]   Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining [J].
Lin, Jintian ;
Xu, Yingxin ;
Fang, Zhiwei ;
Wang, Min ;
Song, Jiangxin ;
Wang, Nengwen ;
Qiao, Lingling ;
Fang, Wei ;
Cheng, Ya .
SCIENTIFIC REPORTS, 2015, 5
[9]   Chip-integrated metasurface for versatile and multi-wavelength control of light couplings with independent phase and arbitrary polarization [J].
Meng, Yuan ;
Hu, Futai ;
Liu, Zhoutian ;
Xie, Peng ;
Shen, Yijie ;
Xiao, Qirong ;
Fu, Xing ;
Bae, Sang-Hoon ;
Gong, Mali .
OPTICS EXPRESS, 2019, 27 (12) :16425-16439
[10]   Inverse design in nanophotonics [J].
Molesky, Sean ;
Lin, Zin ;
Piggott, Alexander Y. ;
Jin, Weiliang ;
Vuckovic, Jelena ;
Rodriguez, Alejandro W. .
NATURE PHOTONICS, 2018, 12 (11) :659-670