Enhanced spatial-temporal dynamics in pose forecasting through multi-graph convolution networks

被引:0
|
作者
Ren, Hongwei [1 ]
Zhang, Xiangran [1 ]
Shi, Yuhong [1 ]
Liang, Kewei [2 ]
机构
[1] Zhejiang Univ, Polytech Inst, Shixiang Rd, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sch Math Sci, Yuhangtang Rd, Hangzhou 310015, Zhejiang, Peoples R China
关键词
Graph convolutional network; Pose prediction; Attention mechanism; MOTION;
D O I
10.1007/s13042-024-02254-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, there has been a growing interest in predicting human motion, which involves forecasting future body poses based on observed pose sequences. This task is complex due to modeling spatial and temporal relationships. Autoregressive models, including recurrent neural networks (RNNs) and their variants, as well as transformer networks, are commonly used for addressing this challenge. However, autoregressive models have several serious drawbacks, such as vanishing or exploding gradients. Other researchers have attempted to solve the communication problem in the spatial dimension by integrating graph convolutional networks (GCNs) and long short-term memory (LSTM) or convolutional neural network (CNN) models. These approaches process temporal and spatial information separately and fuse them to extract features, whereas this sequential processing hampers the model's ability to capture spatiotemporal information and perform feature extraction simultaneously. To address this in human pose forecasting, we propose a novel approach called the multi-graph convolution network (MGCN). By introducing an augmented graph for pose sequences, our model captures spatial and temporal information in one step only using GCN. Multiple frames provide multiple parts, which are joined together in a unified graph instance. Furthermore, our model investigates the impact of natural structure and sequence-aware attention. In the experimental evaluation of the large-scale benchmark datasets (Human3.6M, AMSS, and 3DPW), MGCN outperforms the state-of-the-art methods in human pose prediction.
引用
收藏
页码:5453 / 5467
页数:15
相关论文
共 50 条
  • [31] STMAG: A spatial-temporal mixed attention graph-based convolution model for multi-data flow safety prediction
    Wang, Jingjuan
    Chen, Qingkui
    Gong, Huilin
    INFORMATION SCIENCES, 2020, 525 : 16 - 36
  • [32] A graph-attention based spatial-temporal learning framework for tourism demand forecasting
    Zhou, Binggui
    Dong, Yunxuan
    Yang, Guanghua
    Hou, Fen
    Hu, Zheng
    Xu, Suxiu
    Ma, Shaodan
    KNOWLEDGE-BASED SYSTEMS, 2023, 263
  • [33] DSTAN: attention-enhanced dynamic spatial-temporal network for traffic forecasting
    Luo, Xunlian
    Zhu, Chunjiang
    Zhang, Detian
    Li, Qing
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2025, 28 (01):
  • [34] Short-term power load forecasting based on spatial-temporal dynamic graph and multi-scale Transformer
    Zhu, Li
    Gao, Jingkai
    Zhu, Chunqiang
    Deng, Fan
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2025, 12 (02) : 92 - 111
  • [35] Spatial-Temporal Traffic Prediction With an Interactive Spatial-Enhanced Graph Convolutional Network Model
    Li, Qin
    Xu, Pai
    Yang, Xuan
    Wu, Yuankai
    He, Hongwen
    He, Deqiang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, : 20767 - 20778
  • [36] Multi-Branch Spatial-Temporal Decoupling Neural Network for Traffic Forecasting
    Zheng, Hui
    Qian, Yi
    Zhu, Ruoxuan
    Wang, Xing
    Feng, Junlan
    Zhu, Lin
    Deng, Chao
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [37] Regularized Spatial-Temporal Graph Convolutional Networks for Metro Passenger Flow Prediction
    Gao, Chao
    Liu, Hao
    Huang, Jiajin
    Wang, Zhen
    Li, Xianghua
    Li, Xuelong
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (09) : 11241 - 11255
  • [38] Attention based spatial-temporal graph convolutional networks for boiler NOx prediction
    Zhou, Yongqing
    Hao, Dawei
    Fan, Yuchen
    Wen, Xintong
    Wei, Chang
    Liu, Xin
    Zhang, Wenzhen
    Wang, Heyang
    Meitan Xuebao/Journal of the China Coal Society, 2024, 49 (10): : 4127 - 4137
  • [39] A multi-channel spatial-temporal transformer model for traffic flow forecasting
    Xiao, Jianli
    Long, Baichao
    INFORMATION SCIENCES, 2024, 671
  • [40] Spatial-Temporal Graph Neural Network Framework with Multi-source Local and Global Information Fusion for Traffic Flow Forecasting
    Li, Yue-Xin
    Li, Jian-Yu
    Wang, Zi-Jia
    Zhan, Zhi-Hui
    COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2021, PT I, 2022, 1491 : 371 - 385