Enhanced spatial-temporal dynamics in pose forecasting through multi-graph convolution networks

被引:0
|
作者
Ren, Hongwei [1 ]
Zhang, Xiangran [1 ]
Shi, Yuhong [1 ]
Liang, Kewei [2 ]
机构
[1] Zhejiang Univ, Polytech Inst, Shixiang Rd, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sch Math Sci, Yuhangtang Rd, Hangzhou 310015, Zhejiang, Peoples R China
关键词
Graph convolutional network; Pose prediction; Attention mechanism; MOTION;
D O I
10.1007/s13042-024-02254-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, there has been a growing interest in predicting human motion, which involves forecasting future body poses based on observed pose sequences. This task is complex due to modeling spatial and temporal relationships. Autoregressive models, including recurrent neural networks (RNNs) and their variants, as well as transformer networks, are commonly used for addressing this challenge. However, autoregressive models have several serious drawbacks, such as vanishing or exploding gradients. Other researchers have attempted to solve the communication problem in the spatial dimension by integrating graph convolutional networks (GCNs) and long short-term memory (LSTM) or convolutional neural network (CNN) models. These approaches process temporal and spatial information separately and fuse them to extract features, whereas this sequential processing hampers the model's ability to capture spatiotemporal information and perform feature extraction simultaneously. To address this in human pose forecasting, we propose a novel approach called the multi-graph convolution network (MGCN). By introducing an augmented graph for pose sequences, our model captures spatial and temporal information in one step only using GCN. Multiple frames provide multiple parts, which are joined together in a unified graph instance. Furthermore, our model investigates the impact of natural structure and sequence-aware attention. In the experimental evaluation of the large-scale benchmark datasets (Human3.6M, AMSS, and 3DPW), MGCN outperforms the state-of-the-art methods in human pose prediction.
引用
收藏
页码:5453 / 5467
页数:15
相关论文
共 50 条
  • [21] Graph Convolution Based Spatial-Temporal Attention LSTM Model for Flood Forecasting
    Feng, Jun
    Sha, Haichao
    Ding, Yukai
    Yan, Le
    Yu, Zhangheng
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [22] Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting
    Fang, Zheng
    Long, Qingqing
    Song, Guojie
    Xie, Kunqing
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 364 - 373
  • [23] Customizing Spatial-Temporal Graph Mamba Networks for Pandemic Forecasting
    Xu, Haowei
    Gao, Chao
    Li, Xianghua
    Wang, Zhen
    Jun, Tanimoto
    PRICAI 2024: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2025, 15281 : 236 - 242
  • [24] Power load forecasting based on spatial-temporal fusion graph convolution network
    Jiang, He
    Dong, Yawei
    Dong, Yao
    Wang, Jianzhou
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2024, 204
  • [25] Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting
    Fang, Zheng
    Long, Qingqing
    Song, Guojie
    Xie, Kunqing
    Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2021, : 364 - 373
  • [26] A multi-graph spatial-temporal attention network for air-quality prediction
    Chen, Xiaoxia
    Hu, Yue
    Dong, Fangyan
    Chen, Kewei
    Xia, Hanzhong
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 181 : 442 - 451
  • [27] Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting
    Song, Chao
    Lin, Youfang
    Guo, Shengnan
    Wan, Huaiyu
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 914 - 921
  • [28] TEST-GCN: Topologically Enhanced Spatial-Temporal Graph Convolutional Networks for Traffic Forecasting
    Ali, Muhammad Afif
    Venkatesan, Suriya
    Liang, Victor
    Kruppa, Hannes
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 982 - 987
  • [29] Spatio-Temporal Multi-graph Networks for Demand Forecasting in Online Marketplaces
    Gandhi, Ankit
    Aakanksha
    Kaveri, Sivaramakrishnan
    Chaoji, Vineet
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: APPLIED DATA SCIENCE TRACK, PT IV, 2021, 12978 : 187 - 203
  • [30] Highway traffic flow prediction model with multi-component spatial-temporal graph convolution networks
    Ning, Tao
    Han, Yumeng
    Wang, Jiayu
    SCIENTIFIC REPORTS, 2022, 12 (01)