Relative Hulls and Quantum Codes

被引:14
作者
Anderson, Sarah E. [1 ]
Camps-Moreno, Eduardo [2 ]
Lopez, Hiram H. [2 ]
Matthews, Gretchen L. [2 ]
Ruano, Diego [3 ]
Soprunov, Ivan [4 ]
机构
[1] Univ St Thomas, Dept Math, St Paul, MN 55105 USA
[2] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[3] Univ Valladolid, IMUVA Math Res Inst, Valladolid 47011, Spain
[4] Cleveland State Univ, Dept Math & Stat, Cleveland, OH 44115 USA
关键词
Codes; Quantum entanglement; Error correction codes; Linear codes; Upper bound; Vectors; Standards; Hull; entanglement-assisted quantum error-correcting codes; CSS construction; quantum codes; LINEAR CODES;
D O I
10.1109/TIT.2024.3373550
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given two q -ary codes C-1 and C-2 , the relative hull of C-1 with respect to C-2 is the intersection C-1 boolean AND C-2(perpendicular to) . We prove that when q > 2 , the relative hull dimension can be repeatedly reduced by one, down to a certain bound, by replacing either of the two codes with an equivalent one. The reduction of the relative hull dimension applies to hulls taken with respect to the e -Galois inner product, which has as special cases both the Euclidean and Hermitian inner products. We give conditions under which the relative hull dimension can be increased by one via equivalent codes when q > 2 . We study some consequences of the relative hull properties on entanglement-assisted quantum error-correcting codes and prove the existence of new entanglement-assisted quantum error-correcting maximum distance separable codes, meaning those whose parameters satisfy the quantum Singleton bound.
引用
收藏
页码:3190 / 3201
页数:12
相关论文
共 39 条
[1]   Nonbinary quantum stabilizer codes [J].
Ashikhmin, A ;
Knill, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :3065-3072
[2]  
Ball T, 2021, Journal of Software for Algebra and Geometry, V11, P113, DOI 10.2140/jsag.2021.11.113
[3]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[4]   Correcting quantum errors with entanglement [J].
Brun, Todd ;
Devetak, Igor ;
Hsieh, Min-Hsiu .
SCIENCE, 2006, 314 (5798) :436-439
[5]   Quantum error correction via codes over GF (4) [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1369-1387
[6]   Good quantum error-correcting codes exist [J].
Calderbank, AR ;
Shor, PW .
PHYSICAL REVIEW A, 1996, 54 (02) :1098-1105
[7]   MDS Codes With Galois Hulls of Arbitrary Dimensions and the Related Entanglement-Assisted Quantum Error Correction [J].
Cao, Meng .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (12) :7964-7984
[8]   Linear Codes Over Fq Are Equivalent to LCD Codes for q > 3 [J].
Carlet, Claude ;
Mesnager, Sihem ;
Tang, Chunming ;
Qi, Yanfeng ;
Pellikaan, Ruud .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) :3010-3017
[9]   On the Hull-Variation Problem of Equivalent Linear Codes [J].
Chen, Hao .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (05) :2911-2922
[10]   Entanglement-assisted concatenated quantum codes [J].
Fan, Jihao ;
Li, Jun ;
Zhou, Yongbin ;
Hsieh, Min-Hsiu ;
Poor, H. Vincent .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (24)