Adversarial oversampling for multi-class imbalanced data classification with convolutional neural networks

被引:0
|
作者
Wojciechowski, Adam [1 ,2 ]
Lango, Mateusz [3 ]
机构
[1] Poznan Supercomp & Networking Ctr, Poznan, Poland
[2] Poznan Univ Tech, Fac Comp & Telecommun, Poznan, Poland
[3] Poznan Univ Tech, Inst Comp Sci, Poznan, Poland
关键词
multi-class imbalanced data; image classification; adversarial examples; resampling methods;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although many methods have been proposed for dealing with class imbalance, the problem of multi-class imbalanced classification still received significantly smaller attention. This problem is particularly important in image imbalanced classification since it has many critical applications, e.g., in the medical domain. One group of effective methods for imbalanced data are oversampling algorithms; however, they are usually not designed to work with image data. The current methods also work in separation from the learning algorithm, not considering the difficulties encountered during the training. In this work, we propose a new oversampling algorithm for neural networks that changes oversampled instances during training to further expand the decision region of minority classes, providing better recognition of minority classes. Experiments performed on various datasets with several configurations of class-imbalanced distributions demonstrate that the proposed method provides significant F-measure and G-mean improvements on imbalanced classification tasks.
引用
收藏
页码:98 / 111
页数:14
相关论文
共 50 条
  • [41] Multi-Class Imbalanced Graph Convolutional Network Learning
    Shi, Min
    Tang, Yufei
    Zhu, Xingquan
    Wilson, David
    Liu, Jianxun
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2879 - 2885
  • [42] Performance Analysis of Binarization Strategies for Multi-class Imbalanced Data Classification
    Zak, Michal
    Wozniak, Michal
    COMPUTATIONAL SCIENCE - ICCS 2020, PT IV, 2020, 12140 : 141 - 155
  • [43] An online ensemble classification algorithm for multi-class imbalanced data stream
    Han, Meng
    Li, Chunpeng
    Meng, Fanxing
    He, Feifei
    Zhang, Ruihua
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (11) : 6845 - 6880
  • [44] An Effective Recursive Technique for Multi-Class Classification and Regression for Imbalanced Data
    Alam, Tahira
    Ahmed, Chowdhury Farhan
    Zahin, Sabit Anwar
    Khan, Muhammad Asif Hossain
    Islam, Maliha Tashfia
    IEEE ACCESS, 2019, 7 : 127615 - 127630
  • [45] Optimizing Multi-Class Text Classification Models for Imbalanced News Data
    Anitha, S.
    Kavi Varshini, E.
    Haritha Mahalakshmi, N.
    Jishnu, S.
    2024 15th International Conference on Computing Communication and Networking Technologies, ICCCNT 2024, 2024,
  • [46] An Effective Ensemble Method for Multi-class Classification and Regression for Imbalanced Data
    Alam, Tahira
    Ahmed, Chowdhury Farhan
    Zahin, Sabit Anwar
    Khan, Muhammad Asif Hossain
    Islam, Maliha Tashfia
    ADVANCES IN DATA MINING: APPLICATIONS AND THEORETICAL ASPECTS (ICDM 2018), 2018, 10933 : 59 - 74
  • [47] Oversampling the minority class in a multi-linear feature space for imbalanced data classification
    Liang, Peifeng
    Li, Weite
    Hu, Jinglu
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2018, 13 (10) : 1483 - 1491
  • [48] Convolutional Neural Network for Multi-class Classification of Diabetic Eye Disease
    Sarki, Rubina
    Ahmed, Khandakar
    Wang, Hua
    Zhang, Yanchun
    Wang, Kate
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2022, 9 (04)
  • [49] Deep multi-scale convolutional neural networks for automated classification of multi-class leaf diseases in tomatoes
    Elfatimi E.
    Eryiğit R.
    Elfatimi L.
    Neural Computing and Applications, 2024, 36 (02) : 803 - 822
  • [50] Evaluating Difficulty of Multi-class Imbalanced Data
    Lango, Mateusz
    Napierala, Krystyna
    Stefanowski, Jerzy
    FOUNDATIONS OF INTELLIGENT SYSTEMS, ISMIS 2017, 2017, 10352 : 312 - 322