A Generalized Gamma Copula Model for High Resolution Polarimetric SAR Change Detection

被引:1
作者
Hermant, Stephen [1 ]
Ash, Joshua [1 ]
机构
[1] Wright State Univ, Dept Elect Engn, Dayton, OH 45435 USA
来源
ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXXI | 2024年 / 13032卷
关键词
Synthetic aperture radar; polarimetry; change detection; copulas; POLARIZATION;
D O I
10.1117/12.3028781
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we describe a new approach to non-coherent change detection for high resolution polarimetric synthetic aperture radar (polSAR) exploitation. In the high resolution setting, the reduced size of a resolution cell diminishes the applicability of central limit theorem arguments that lead to the traditional Gaussian backscatter models that underpin existing polSAR change detection algorithms. To mitigate this, we introduce a new model for polSAR data that combines generalized Gamma (GG) distributed marginals within a copula framework to capture the correlation dependency between multiple polSAR channels. Using the GG-copula model, a generalized likelihood ratio test (GLRT) is derived for detecting changes within high resolution polSAR imagery. Examples using measured data demonstrate the non-Gaussian nature of high resolution polSAR data and quantify a performance improvement when using the proposed GG-copula change detection framework.
引用
收藏
页数:16
相关论文
共 27 条
  • [1] Arii Motofumi, 2009, PhD Dissertation
  • [2] Joint imaging and change detection for robust exploitation in interrupted SAR environments
    Ash, Joshua N.
    [J]. ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XX, 2013, 8746
  • [3] Bouhlel Nizar, IEEE Transactions on Geoscience and Remote Sensing, V58
  • [4] A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data
    Conradsen, K
    Nielsen, AA
    Sehou, J
    Skriver, H
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (01): : 4 - 19
  • [5] Deng XP, 2018, INT GEOSCI REMOTE SE, P617, DOI 10.1109/IGARSS.2018.8517360
  • [6] SOME FUNDAMENTAL PROPERTIES OF SPECKLE
    GOODMAN, JW
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1976, 66 (11) : 1145 - 1150
  • [7] Soil Moisture Retrieval in Agricultural Fields Using Adaptive Model-Based Polarimetric Decomposition of SAR Data
    He, Lian
    Panciera, Rocco
    Tanase, Mihai A.
    Walker, Jeffrey P.
    Qin, Qiming
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08): : 4445 - 4460
  • [8] Kay S. M., 1998, FUNDAMENTALS STAT SI, V2
  • [9] Supervised High-Resolution Dual-Polarization SAR Image Classification by Finite Mixtures and Copulas
    Krylov, Vladimir A.
    Moser, Gabriele
    Serpico, Sebastiano B.
    Zerubia, Josiane
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (03) : 554 - 566
  • [10] Unsupervised Learning of Generalized Gamma Mixture Model With Application in Statistical Modeling of High-Resolution SAR Images
    Li, Heng-Chao
    Krylov, Vladimir A.
    Fan, Ping-Zhi
    Zerubia, Josiane
    Emery, William J.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (04): : 2153 - 2170