Exponential Stability of Parametric Optimization-Based Controllers via Lur'e Contractivity

被引:1
作者
Davydov, Alexander [1 ]
Bullo, Francesco [1 ]
机构
[1] Univ Calif Santa Barbara, Ctr Control Dynam Syst & Computat, Santa Barbara, CA 93106 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2024年 / 8卷
关键词
Control systems; Optimization; Stability analysis; Sufficient conditions; Linear systems; Numerical stability; Dynamical systems; Lur'e systems; constrained control; optimization algorithms; CONTROL BARRIER FUNCTIONS; QUADRATIC PROGRAMS; FEEDBACK;
D O I
10.1109/LCSYS.2024.3408110
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter, we investigate sufficient conditions for the exponential stability of LTI systems driven by controllers derived from parametric optimization problems. Our primary focus is on parametric projection controllers, namely parametric programs whose objective function is the squared distance to a nominal controller. Leveraging the virtual system method of analysis and a novel contractivity result for Lur'e systems, we establish a sufficient LMI condition for the exponential stability of an LTI system with a parametric projection-based controller. Separately, we prove additional results for single-integrator systems. Finally, we apply our results to state-dependent saturated control systems and control barrier function-based control and provide numerical simulations.
引用
收藏
页码:1277 / 1282
页数:6
相关论文
共 22 条
  • [1] Control Barrier Function Based Quadratic Programs for Safety Critical Systems
    Ames, Aaron D.
    Xu, Xiangru
    Grizzle, Jessy W.
    Tabuada, Paulo
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) : 3861 - 3876
  • [2] LMI conditions for contraction and synchronization
    Andrieu, V.
    Tarbouriech, S.
    [J]. IFAC PAPERSONLINE, 2019, 52 (16): : 616 - 621
  • [3] Bank B., 1982, Nonlinear parametric optimization
  • [4] Time-Varying Optimization of LTI Systems Via Projected Primal-Dual Gradient Flows
    Bianchin, Gianluca
    Cortes, Jorge
    Poveda, Jorge I.
    Dall'Anese, Emiliano
    [J]. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2022, 9 (01): : 474 - 486
  • [5] Borrelli F., 2017, Predictive Control for Linear and Hybrid Systems
  • [6] Bullo F., 2023, Contraction Theory for Dynamical Syst, V1st
  • [7] INCREMENTAL QUADRATIC STABILITY
    D'Alto, Luis
    Corless, Martin
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2013, 3 (01): : 174 - 201
  • [8] SENSITIVITY ANALYSIS FOR NONLINEAR-PROGRAMMING USING PENALTY METHODS
    FIACCO, AV
    [J]. MATHEMATICAL PROGRAMMING, 1976, 10 (03) : 287 - 311
  • [9] LMI conditions for contraction, integral action, and output feedback stabilization for a class of nonlinear systems✩
    Giaccagli, Mattia
    Andrieu, Vincent
    Tarbouriech, Sophie
    Astolfi, Daniele
    [J]. AUTOMATICA, 2023, 154
  • [10] Robust control barrier functions for constrained stabilization of nonlinear systems
    Jankovic, Mrdjan
    [J]. AUTOMATICA, 2018, 96 : 359 - 367