DFT and Persistent Homology for Topological Musical Data Analysis

被引:0
|
作者
Callet, Victoria [1 ]
机构
[1] Univ Strasbourg, IRMA, UMR 7501, CNRS, Strasbourg, France
来源
MATHEMATICS AND COMPUTATION IN MUSIC, MCM 2024 | 2024年 / 14639卷
关键词
Filtered simplicial complex; Persistent homology; Barcodes; Discrete Fourier Transform; Topological Data Analysis; Musical analysis; Tonnetz;
D O I
10.1007/978-3-031-60638-0_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There are several works that already exist in the context of persistent homology for Topological Musical Data Analysis, and we can cite [2] and [3] among others: in each one of these works, the main problem is to find how we can associate a point cloud with a musical score, that is a set of points with a metric. This paper proposes to combine persistent homology with a symbolic representation of musical structures given by the Discrete Fourier Transform to answer this question: the points are the musical bars and the metric is given by the DFT in dimension two. We start with the mathematical background, and the main goal of this paper is thus to support the use of the DFT in this context, by extracting barcodes from artificially constructed scores based on Tonnetze, and then recovering topological features.
引用
收藏
页码:291 / 304
页数:14
相关论文
共 50 条
  • [1] Persistent Homology on Musical Bars
    Callet, Victoria
    MATHEMATICS AND COMPUTATION IN MUSIC (MCM 2022), 2022, : 349 - 355
  • [2] EXPLORING PERSISTENT LOCAL HOMOLOGY IN TOPOLOGICAL DATA ANALYSIS
    Fasy, Brittany Terese
    Wang, Bei
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 6430 - 6434
  • [3] Topological data analysis for geographical information science using persistent homology
    Corcoran, Padraig
    Jones, Christopher B.
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2023, 37 (03) : 712 - 745
  • [4] Computation of persistent homology on streaming data using topological data summaries
    Moitra, Anindya
    Malott, Nicholas O. O.
    Wilsey, Philip A. A.
    COMPUTATIONAL INTELLIGENCE, 2023, 39 (05) : 860 - 899
  • [5] Topological Data Analysis as a Morphometric Method: Using Persistent Homology to Demarcate a Leaf Morphospace
    Li, Mao
    An, Hong
    Angelovici, Ruthie
    Bagaza, Clement
    Batushansky, Albert
    Clark, Lynn
    Coneva, Viktoriya
    Donoghue, Michael J.
    Edwards, Erika
    Fajardo, Diego
    Fang, Hui
    Frank, Margaret H.
    Gallaher, Timothy
    Gebken, Sarah
    Hill, Theresa
    Jansky, Shelley
    Kaur, Baljinder
    Klahs, Phillip C.
    Klein, Laura L.
    Kuraparthy, Vasu
    Londo, Jason
    Migicovsky, Zoe
    Miller, Allison
    Mohn, Rebekah
    Myles, Sean
    Otoni, Wagner C.
    Pires, J. C.
    Rieffer, Edmond
    Schmerler, Sam
    Spriggs, Elizabeth
    Topp, Christopher N.
    Van Deynze, Allen
    Zhang, Kuang
    Zhu, Linglong
    Zink, Braden M.
    Chitwood, Daniel H.
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [6] The promises of persistent homology, machine learning, and deep neural networks in topological data analysis of democracy survival
    Arfi B.
    Quality & Quantity, 2024, 58 (2) : 1685 - 1727
  • [7] Topological analysis of traffic pace via persistent homology*
    Carmody, Daniel R.
    Sowers, Richard B.
    JOURNAL OF PHYSICS-COMPLEXITY, 2021, 2 (02):
  • [8] Musical stylistic analysis: a study of intervallic transition graphs via persistent homology
    Mijangos, Martin
    Bravetti, Alessandro
    Padilla, Pablo
    JOURNAL OF MATHEMATICS AND MUSIC, 2024, 18 (01) : 89 - 108
  • [9] Persistent Homology on Streaming Data
    Moitra, Anindya
    Malott, Nicholas O.
    Wilsey, Philip A.
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 636 - 643
  • [10] Using Topological Data Analysis (TDA) and Persistent Homology to Analyze the Stock Markets in Singapore and Taiwan
    Yen, Peter Tsung-Wen
    Cheong, Siew Ann
    FRONTIERS IN PHYSICS, 2021, 9