Re-exploring control strategies in a non-Markovian open quantum system by reinforcement learning

被引:1
作者
Jaouadi, Amine [1 ]
Mangaud, Etienne [2 ]
Desouter-Lecomte, Michele [3 ]
机构
[1] ECE Paris, Grad Sch Engn, LyRIDS, F-75015 Paris, France
[2] Univ Gustave Eiffel, CNRS, MSME, UPEC, F-77454 Marne La Vallee, France
[3] Univ Paris Saclay, CNRS, Inst Chim Phys, UMR8000, F-91400 Orsay, France
关键词
DYNAMICS; DECOMPOSITION; SELECTIVITY; DESIGN; ENERGY;
D O I
10.1103/PhysRevA.109.013104
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this study, we reexamine a recent optimal control simulation targeting the preparation of a superposition of two excited electronic states in the ultraviolet (UV) range in a complex molecular system. We revisit this control from the perspective of reinforcement learning, offering an efficient alternative to conventional quantum control methods. The two excited states are addressable by orthogonal polarizations and their superposition corresponds to a right or left localization of the electronic density. The pulse duration spans tens of femtoseconds to prevent excitation of higher excited bright states which leads to a strong perturbation by the nuclear motions. We modify an open source software by Giannelli et al. [L. Giannelli et al., Phys. Lett. A 434, 128054 (2022)] that implements reinforcement learning with Lindblad dynamics, to introduce non-Markovianity of the surrounding reservoir either by time-dependent rates, or more exactly, by using the hierarchical equations of motion with the QuTip-BoFiN package. This extension opens the way to wider applications for non-Markovian environments, in particular when the active system interacts with a highly structured noise.
引用
收藏
页数:12
相关论文
共 91 条
  • [1] Abadi M., 2015, TENSORFLOW LARGE SCA
  • [2] The extended Bloch representation of quantum mechanics and the hidden-measurement solution to the measurement problem
    Aerts, Diederik
    de Bianchi, Massimiliano Sassoli
    [J]. ANNALS OF PHYSICS, 2014, 351 : 975 - 1025
  • [3] Quantum optimal control of multilevel dissipative quantum systems with reinforcement learning
    An, Zheng
    Song, Hai-Jing
    He, Qi-Kai
    Zhou, D. L.
    [J]. PHYSICAL REVIEW A, 2021, 103 (01)
  • [4] Deep reinforcement learning for quantum gate control
    An, Zheng
    Zhou, D. L.
    [J]. EPL, 2019, 126 (06)
  • [5] Finding the Kraus decomposition from a master equation and vice versa
    Andersson, Erika
    Cresser, James D.
    Hall, Michael J. W.
    [J]. JOURNAL OF MODERN OPTICS, 2007, 54 (12) : 1695 - 1716
  • [6] [Anonymous], 2017, J MODERN PHYS
  • [7] aps, About us, DOI [10.1103/PhysRevA.109.013104, DOI 10.1103/PHYSREVA.109.013104]
  • [8] Time-optimal universal control of two-level systems under strong driving
    Avinadav, C.
    Fischer, R.
    London, P.
    Gershoni, D.
    [J]. PHYSICAL REVIEW B, 2014, 89 (24)
  • [9] Experimental Deep Reinforcement Learning for Error-Robust Gate-Set Design on a Superconducting Quantum Computer
    Baum, Yuval
    Amico, Mirko
    Howell, Sean
    Hush, Michael
    Liuzzi, Maggie
    Mundada, Pranav
    Merkh, Thomas
    Carvalho, Andre R. R.
    Biercuk, Michael J.
    [J]. PRX QUANTUM, 2021, 2 (04):
  • [10] Roadmap on STIRAP applications
    Bergmann, Klaas
    Naegerl, Hanns-Christoph
    Panda, Cristian
    Gabrielse, Gerald
    Miloglyadov, Eduard
    Quack, Martin
    Seyfang, Georg
    Wichmann, Gunther
    Ospelkaus, Silke
    Kuhn, Axel
    Longhi, Stefano
    Szameit, Alexander
    Pirro, Philipp
    Hillebrands, Burkard
    Zhu, Xue-Feng
    Zhu, Jie
    Drewsen, Michael
    Hensinger, Winfried K.
    Weidt, Sebastian
    Halfmann, Thomas
    Wang, Hai-Lin
    Paraoanu, Gheorghe Sorin
    Vitanov, Nikolay V.
    Mompart, Jordi
    Busch, Thomas
    Barnum, Timothy J.
    Grimes, David D.
    Field, Robert W.
    Raizen, Mark G.
    Narevicius, Edvardas
    Auzinsh, Marcis
    Budker, Dmitry
    Palffy, Adriana
    Keitel, Christoph H.
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2019, 52 (20)